Aromātai
21-i
Wāhi Tūturu
21
Tohaina
Kua tāruatia ki te papatopenga
2\times 3+2\times \left(-5i\right)+3i\times 3+3\left(-5\right)i^{2}
Me whakarea ngā tau matatini 2+3i me 3-5i pēnā i te whakarea huarua.
2\times 3+2\times \left(-5i\right)+3i\times 3+3\left(-5\right)\left(-1\right)
Hei tōna tikanga, ko te i^{2} ko -1.
6-10i+9i+15
Mahia ngā whakarea.
6+15+\left(-10+9\right)i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
21-i
Mahia ngā tāpiri.
Re(2\times 3+2\times \left(-5i\right)+3i\times 3+3\left(-5\right)i^{2})
Me whakarea ngā tau matatini 2+3i me 3-5i pēnā i te whakarea huarua.
Re(2\times 3+2\times \left(-5i\right)+3i\times 3+3\left(-5\right)\left(-1\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(6-10i+9i+15)
Mahia ngā whakarea i roto o 2\times 3+2\times \left(-5i\right)+3i\times 3+3\left(-5\right)\left(-1\right).
Re(6+15+\left(-10+9\right)i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 6-10i+9i+15.
Re(21-i)
Mahia ngā tāpiri i roto o 6+15+\left(-10+9\right)i.
21
Ko te wāhi tūturu o 21-i ko 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}