Whakaoti mō P (complex solution)
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{C}\text{, }&10p^{2.2}+12527p+957500=0\text{ and }p\neq 0\end{matrix}\right.
Whakaoti mō P
\left\{\begin{matrix}\\P=0\text{, }&\text{unconditionally}\\P\in \mathrm{R}\text{, }&10p^{2.2}+12527p+957500=0\text{ and }p\neq 0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
\left(173-47.73+0.1p^{1.2}+\frac{1750+7825}{p}\right)Pp=0
Whakareatia ngā taha e rua o te whārite ki te p.
\left(125.27+0.1p^{1.2}+\frac{1750+7825}{p}\right)Pp=0
Tangohia te 47.73 i te 173, ka 125.27.
\left(125.27+0.1p^{1.2}+\frac{9575}{p}\right)Pp=0
Tāpirihia te 1750 ki te 7825, ka 9575.
\left(125.27P+0.1p^{1.2}P+\frac{9575}{p}P\right)p=0
Whakamahia te āhuatanga tohatoha hei whakarea te 125.27+0.1p^{1.2}+\frac{9575}{p} ki te P.
\left(125.27P+0.1p^{1.2}P+\frac{9575P}{p}\right)p=0
Tuhia te \frac{9575}{p}P hei hautanga kotahi.
125.27Pp+0.1p^{1.2}Pp+\frac{9575P}{p}p=0
Whakamahia te āhuatanga tohatoha hei whakarea te 125.27P+0.1p^{1.2}P+\frac{9575P}{p} ki te p.
125.27Pp+0.1p^{2.2}P+\frac{9575P}{p}p=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1.2 me te 1 kia riro ai te 2.2.
125.27Pp+0.1p^{2.2}P+\frac{9575Pp}{p}=0
Tuhia te \frac{9575P}{p}p hei hautanga kotahi.
125.27Pp+0.1p^{2.2}P+9575P=0
Me whakakore tahi te p i te taurunga me te tauraro.
\left(125.27p+0.1p^{2.2}+9575\right)P=0
Pahekotia ngā kīanga tau katoa e whai ana i te P.
\left(\frac{p^{2.2}}{10}+\frac{12527p}{100}+9575\right)P=0
He hanga arowhānui tō te whārite.
P=0
Whakawehe 0 ki te 125.27p+0.1p^{2.2}+9575.
\left(173-47.73+0.1p^{1.2}+\frac{1750+7825}{p}\right)Pp=0
Whakareatia ngā taha e rua o te whārite ki te p.
\left(125.27+0.1p^{1.2}+\frac{1750+7825}{p}\right)Pp=0
Tangohia te 47.73 i te 173, ka 125.27.
\left(125.27+0.1p^{1.2}+\frac{9575}{p}\right)Pp=0
Tāpirihia te 1750 ki te 7825, ka 9575.
\left(125.27P+0.1p^{1.2}P+\frac{9575}{p}P\right)p=0
Whakamahia te āhuatanga tohatoha hei whakarea te 125.27+0.1p^{1.2}+\frac{9575}{p} ki te P.
\left(125.27P+0.1p^{1.2}P+\frac{9575P}{p}\right)p=0
Tuhia te \frac{9575}{p}P hei hautanga kotahi.
125.27Pp+0.1p^{1.2}Pp+\frac{9575P}{p}p=0
Whakamahia te āhuatanga tohatoha hei whakarea te 125.27P+0.1p^{1.2}P+\frac{9575P}{p} ki te p.
125.27Pp+0.1p^{2.2}P+\frac{9575P}{p}p=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1.2 me te 1 kia riro ai te 2.2.
125.27Pp+0.1p^{2.2}P+\frac{9575Pp}{p}=0
Tuhia te \frac{9575P}{p}p hei hautanga kotahi.
125.27Pp+0.1p^{2.2}P+9575P=0
Me whakakore tahi te p i te taurunga me te tauraro.
\left(125.27p+0.1p^{2.2}+9575\right)P=0
Pahekotia ngā kīanga tau katoa e whai ana i te P.
\left(\frac{p^{2.2}}{10}+\frac{12527p}{100}+9575\right)P=0
He hanga arowhānui tō te whārite.
P=0
Whakawehe 0 ki te 125.27p+0.1p^{2.2}+9575.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}