Tīpoka ki ngā ihirangi matua
Whakaoti mō k (complex solution)
Tick mark Image
Whakaoti mō k
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-kx^{2}+x+1-k=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1-k ki te x^{2}.
-kx^{2}+x+1-k=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-kx^{2}+1-k=-x^{2}-x
Tangohia te x mai i ngā taha e rua.
-kx^{2}-k=-x^{2}-x-1
Tangohia te 1 mai i ngā taha e rua.
\left(-x^{2}-1\right)k=-x^{2}-x-1
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(-x^{2}-1\right)k}{-x^{2}-1}=\frac{-x^{2}-x-1}{-x^{2}-1}
Whakawehea ngā taha e rua ki te -x^{2}-1.
k=\frac{-x^{2}-x-1}{-x^{2}-1}
Mā te whakawehe ki te -x^{2}-1 ka wetekia te whakareanga ki te -x^{2}-1.
k=\frac{x^{2}+x+1}{x^{2}+1}
Whakawehe -x^{2}-x-1 ki te -x^{2}-1.
x^{2}-kx^{2}+x+1-k=0
Whakamahia te āhuatanga tohatoha hei whakarea te 1-k ki te x^{2}.
-kx^{2}+x+1-k=-x^{2}
Tangohia te x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-kx^{2}+1-k=-x^{2}-x
Tangohia te x mai i ngā taha e rua.
-kx^{2}-k=-x^{2}-x-1
Tangohia te 1 mai i ngā taha e rua.
\left(-x^{2}-1\right)k=-x^{2}-x-1
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(-x^{2}-1\right)k}{-x^{2}-1}=\frac{-x^{2}-x-1}{-x^{2}-1}
Whakawehea ngā taha e rua ki te -x^{2}-1.
k=\frac{-x^{2}-x-1}{-x^{2}-1}
Mā te whakawehe ki te -x^{2}-1 ka wetekia te whakareanga ki te -x^{2}-1.
k=\frac{x^{2}+x+1}{x^{2}+1}
Whakawehe -x^{2}-x-1 ki te -x^{2}-1.