Whakaoti mō k
k=-\frac{5x^{2}}{4}+x+1
Whakaoti mō x (complex solution)
x=\frac{-2\sqrt{6-5k}+2}{5}
x=\frac{2\sqrt{6-5k}+2}{5}
Whakaoti mō x
x=\frac{-2\sqrt{6-5k}+2}{5}
x=\frac{2\sqrt{6-5k}+2}{5}\text{, }k\leq \frac{6}{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{5}{4}x^{2}+x+1-k=0
Tangohia te \frac{9}{4} i te 1, ka -\frac{5}{4}.
x+1-k=\frac{5}{4}x^{2}
Me tāpiri te \frac{5}{4}x^{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
1-k=\frac{5}{4}x^{2}-x
Tangohia te x mai i ngā taha e rua.
-k=\frac{5}{4}x^{2}-x-1
Tangohia te 1 mai i ngā taha e rua.
-k=\frac{5x^{2}}{4}-x-1
He hanga arowhānui tō te whārite.
\frac{-k}{-1}=\frac{\frac{5x^{2}}{4}-x-1}{-1}
Whakawehea ngā taha e rua ki te -1.
k=\frac{\frac{5x^{2}}{4}-x-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k=-\frac{5x^{2}}{4}+x+1
Whakawehe \frac{5x^{2}}{4}-x-1 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}