Whakaoti mō k
k=\frac{3x^{2}}{2}+x+1
Whakaoti mō x (complex solution)
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}
Whakaoti mō x
x=\frac{\sqrt{6k-5}-1}{3}
x=\frac{-\sqrt{6k-5}-1}{3}\text{, }k\geq \frac{5}{6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(1-\left(-\frac{1}{2}\right)\right)x^{2}+x+1-k=0
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\left(1+\frac{1}{2}\right)x^{2}+x+1-k=0
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
\frac{3}{2}x^{2}+x+1-k=0
Tāpirihia te 1 ki te \frac{1}{2}, ka \frac{3}{2}.
x+1-k=-\frac{3}{2}x^{2}
Tangohia te \frac{3}{2}x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
1-k=-\frac{3}{2}x^{2}-x
Tangohia te x mai i ngā taha e rua.
-k=-\frac{3}{2}x^{2}-x-1
Tangohia te 1 mai i ngā taha e rua.
-k=-\frac{3x^{2}}{2}-x-1
He hanga arowhānui tō te whārite.
\frac{-k}{-1}=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Whakawehea ngā taha e rua ki te -1.
k=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k=\frac{3x^{2}}{2}+x+1
Whakawehe -\frac{3x^{2}}{2}-x-1 ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}