Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(1-\left(-\frac{1}{2}\right)\right)x^{2}+x+1-k=0
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\left(1+\frac{1}{2}\right)x^{2}+x+1-k=0
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
\frac{3}{2}x^{2}+x+1-k=0
Tāpirihia te 1 ki te \frac{1}{2}, ka \frac{3}{2}.
x+1-k=-\frac{3}{2}x^{2}
Tangohia te \frac{3}{2}x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
1-k=-\frac{3}{2}x^{2}-x
Tangohia te x mai i ngā taha e rua.
-k=-\frac{3}{2}x^{2}-x-1
Tangohia te 1 mai i ngā taha e rua.
-k=-\frac{3x^{2}}{2}-x-1
He hanga arowhānui tō te whārite.
\frac{-k}{-1}=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Whakawehea ngā taha e rua ki te -1.
k=\frac{-\frac{3x^{2}}{2}-x-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
k=\frac{3x^{2}}{2}+x+1
Whakawehe -\frac{3x^{2}}{2}-x-1 ki te -1.