Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-2+8i\right)\left(2-6i\right)}{\left(2+6i\right)\left(2-6i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2-6i.
\frac{\left(-2+8i\right)\left(2-6i\right)}{2^{2}-6^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+8i\right)\left(2-6i\right)}{40}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)i^{2}}{40}
Me whakarea ngā tau matatini -2+8i me 2-6i pēnā i te whakarea huarua.
\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right)}{40}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-4+12i+16i+48}{40}
Mahia ngā whakarea i roto o -2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right).
\frac{-4+48+\left(12+16\right)i}{40}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -4+12i+16i+48.
\frac{44+28i}{40}
Mahia ngā tāpiri i roto o -4+48+\left(12+16\right)i.
\frac{11}{10}+\frac{7}{10}i
Whakawehea te 44+28i ki te 40, kia riro ko \frac{11}{10}+\frac{7}{10}i.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{\left(2+6i\right)\left(2-6i\right)})
Me whakarea te taurunga me te tauraro o \frac{-2+8i}{2+6i} ki te haumi hiato o te tauraro, 2-6i.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{2^{2}-6^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+8i\right)\left(2-6i\right)}{40})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)i^{2}}{40})
Me whakarea ngā tau matatini -2+8i me 2-6i pēnā i te whakarea huarua.
Re(\frac{-2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right)}{40})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-4+12i+16i+48}{40})
Mahia ngā whakarea i roto o -2\times 2-2\times \left(-6i\right)+8i\times 2+8\left(-6\right)\left(-1\right).
Re(\frac{-4+48+\left(12+16\right)i}{40})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -4+12i+16i+48.
Re(\frac{44+28i}{40})
Mahia ngā tāpiri i roto o -4+48+\left(12+16\right)i.
Re(\frac{11}{10}+\frac{7}{10}i)
Whakawehea te 44+28i ki te 40, kia riro ko \frac{11}{10}+\frac{7}{10}i.
\frac{11}{10}
Ko te wāhi tūturu o \frac{11}{10}+\frac{7}{10}i ko \frac{11}{10}.