Aromātai
\frac{13}{10}-\frac{1}{10}i=1.3-0.1i
Wāhi Tūturu
\frac{13}{10} = 1\frac{3}{10} = 1.3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -2-6i.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2+8i\right)\left(-2-6i\right)}{40}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40}
Me whakarea ngā tau matatini -2+8i me -2-6i pēnā i te whakarea huarua.
\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{4+12i-16i+48}{40}
Mahia ngā whakarea i roto o -2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right).
\frac{4+48+\left(12-16\right)i}{40}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4+12i-16i+48.
\frac{52-4i}{40}
Mahia ngā tāpiri i roto o 4+48+\left(12-16\right)i.
\frac{13}{10}-\frac{1}{10}i
Whakawehea te 52-4i ki te 40, kia riro ko \frac{13}{10}-\frac{1}{10}i.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2+6i\right)\left(-2-6i\right)})
Me whakarea te taurunga me te tauraro o \frac{-2+8i}{-2+6i} ki te haumi hiato o te tauraro, -2-6i.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{\left(-2\right)^{2}-6^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2+8i\right)\left(-2-6i\right)}{40})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)i^{2}}{40})
Me whakarea ngā tau matatini -2+8i me -2-6i pēnā i te whakarea huarua.
Re(\frac{-2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right)}{40})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{4+12i-16i+48}{40})
Mahia ngā whakarea i roto o -2\left(-2\right)-2\times \left(-6i\right)+8i\left(-2\right)+8\left(-6\right)\left(-1\right).
Re(\frac{4+48+\left(12-16\right)i}{40})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4+12i-16i+48.
Re(\frac{52-4i}{40})
Mahia ngā tāpiri i roto o 4+48+\left(12-16\right)i.
Re(\frac{13}{10}-\frac{1}{10}i)
Whakawehea te 52-4i ki te 40, kia riro ko \frac{13}{10}-\frac{1}{10}i.
\frac{13}{10}
Ko te wāhi tūturu o \frac{13}{10}-\frac{1}{10}i ko \frac{13}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}