\left( \begin{array} { l l } { 5 } & { 2 } \\ { 3 } & { 1 } \end{array} \right) \left( \begin{array} { l l l } { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \end{array} \right)
Aromātai
\left(\begin{matrix}13&20&27\\7&11&15\end{matrix}\right)
Whakawhiti Poukapa
\left(\begin{matrix}13&7\\20&11\\27&15\end{matrix}\right)
Tohaina
Kua tāruatia ki te papatopenga
\left(\begin{matrix}5&2\\3&1\end{matrix}\right)\left(\begin{matrix}1&2&3\\4&5&6\end{matrix}\right)
Ka tautuhia te whakareanga poukapa mēnā he ōrite te tau o ngā tīwae o te poukapa tuatahi ki te tau o ngā rārangi o te poukapa tuarua.
\left(\begin{matrix}5+2\times 4&&\\&&\end{matrix}\right)
Whakareatia ia huānga o te rārangi tuatahi o te poukapa tuatahi ki te huānga hāngai o te tīwae tuatahi o te poukapa tuarua kā tāpiri i ēnei hua kia kitea ai te huānga i te rārangi tuatahi, tīwae tuatahi o te poukapa hua.
\left(\begin{matrix}5+2\times 4&5\times 2+2\times 5&5\times 3+2\times 6\\3+4&3\times 2+5&3\times 3+6\end{matrix}\right)
Ka kitea ngā toenga huānga o te poukapa hua mā taua tikanga anō.
\left(\begin{matrix}5+8&10+10&15+12\\3+4&6+5&9+6\end{matrix}\right)
Whakarūnātia ia huānga mā te whakarea i ngā kīanga tau takitahi.
\left(\begin{matrix}13&20&27\\7&11&15\end{matrix}\right)
Tapekehia ia huānga o te poukapa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}