Aromātai
54
Tauwehe
2\times 3^{3}
Tohaina
Kua tāruatia ki te papatopenga
\left(10\sqrt{6}+\sqrt{6}-\sqrt{24}\right)\sqrt{6}
Tauwehea te 600=10^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 6} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{6}. Tuhia te pūtakerua o te 10^{2}.
\left(11\sqrt{6}-\sqrt{24}\right)\sqrt{6}
Pahekotia te 10\sqrt{6} me \sqrt{6}, ka 11\sqrt{6}.
\left(11\sqrt{6}-2\sqrt{6}\right)\sqrt{6}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
9\sqrt{6}\sqrt{6}
Pahekotia te 11\sqrt{6} me -2\sqrt{6}, ka 9\sqrt{6}.
9\times 6
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
54
Whakareatia te 9 ki te 6, ka 54.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}