Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{9\times 4m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 25 me 9 ko 225. Whakareatia \frac{4m^{4}}{25} ki te \frac{9}{9}. Whakareatia \frac{16n^{4}}{9} ki te \frac{25}{25}.
\frac{9\times 4m^{4}-25\times 16n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Tā te mea he rite te tauraro o \frac{9\times 4m^{4}}{225} me \frac{25\times 16n^{4}}{225}, me tango rāua mā te tango i ō raua taurunga.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Mahia ngā whakarea i roto o 9\times 4m^{4}-25\times 16n^{4}.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{9\times 4m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 25 me 9 ko 225. Whakareatia \frac{4m^{4}}{25} ki te \frac{9}{9}. Whakareatia \frac{16n^{4}}{9} ki te \frac{25}{25}.
\frac{36m^{4}-400n^{4}}{225}\times \frac{9\times 4m^{4}+25\times 16n^{4}}{225}
Tā te mea he rite te tauraro o \frac{9\times 4m^{4}}{225} me \frac{25\times 16n^{4}}{225}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36m^{4}-400n^{4}}{225}\times \frac{36m^{4}+400n^{4}}{225}
Mahia ngā whakarea i roto o 9\times 4m^{4}+25\times 16n^{4}.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{225\times 225}
Me whakarea te \frac{36m^{4}-400n^{4}}{225} ki te \frac{36m^{4}+400n^{4}}{225} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{50625}
Whakareatia te 225 ki te 225, ka 50625.
\frac{\left(36m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Whakaarohia te \left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{36^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Whakarohaina te \left(36m^{4}\right)^{2}.
\frac{36^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
\frac{1296m^{8}-\left(400n^{4}\right)^{2}}{50625}
Tātaihia te 36 mā te pū o 2, kia riro ko 1296.
\frac{1296m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
Whakarohaina te \left(400n^{4}\right)^{2}.
\frac{1296m^{8}-400^{2}n^{8}}{50625}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
\frac{1296m^{8}-160000n^{8}}{50625}
Tātaihia te 400 mā te pū o 2, kia riro ko 160000.
\left(\frac{9\times 4m^{4}}{225}-\frac{25\times 16n^{4}}{225}\right)\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 25 me 9 ko 225. Whakareatia \frac{4m^{4}}{25} ki te \frac{9}{9}. Whakareatia \frac{16n^{4}}{9} ki te \frac{25}{25}.
\frac{9\times 4m^{4}-25\times 16n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Tā te mea he rite te tauraro o \frac{9\times 4m^{4}}{225} me \frac{25\times 16n^{4}}{225}, me tango rāua mā te tango i ō raua taurunga.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{4m^{4}}{25}+\frac{16n^{4}}{9}\right)
Mahia ngā whakarea i roto o 9\times 4m^{4}-25\times 16n^{4}.
\frac{36m^{4}-400n^{4}}{225}\left(\frac{9\times 4m^{4}}{225}+\frac{25\times 16n^{4}}{225}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 25 me 9 ko 225. Whakareatia \frac{4m^{4}}{25} ki te \frac{9}{9}. Whakareatia \frac{16n^{4}}{9} ki te \frac{25}{25}.
\frac{36m^{4}-400n^{4}}{225}\times \frac{9\times 4m^{4}+25\times 16n^{4}}{225}
Tā te mea he rite te tauraro o \frac{9\times 4m^{4}}{225} me \frac{25\times 16n^{4}}{225}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36m^{4}-400n^{4}}{225}\times \frac{36m^{4}+400n^{4}}{225}
Mahia ngā whakarea i roto o 9\times 4m^{4}+25\times 16n^{4}.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{225\times 225}
Me whakarea te \frac{36m^{4}-400n^{4}}{225} ki te \frac{36m^{4}+400n^{4}}{225} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right)}{50625}
Whakareatia te 225 ki te 225, ka 50625.
\frac{\left(36m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Whakaarohia te \left(36m^{4}-400n^{4}\right)\left(36m^{4}+400n^{4}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{36^{2}\left(m^{4}\right)^{2}-\left(400n^{4}\right)^{2}}{50625}
Whakarohaina te \left(36m^{4}\right)^{2}.
\frac{36^{2}m^{8}-\left(400n^{4}\right)^{2}}{50625}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
\frac{1296m^{8}-\left(400n^{4}\right)^{2}}{50625}
Tātaihia te 36 mā te pū o 2, kia riro ko 1296.
\frac{1296m^{8}-400^{2}\left(n^{4}\right)^{2}}{50625}
Whakarohaina te \left(400n^{4}\right)^{2}.
\frac{1296m^{8}-400^{2}n^{8}}{50625}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 4 me te 2 kia riro ai te 8.
\frac{1296m^{8}-160000n^{8}}{50625}
Tātaihia te 400 mā te pū o 2, kia riro ko 160000.