Aromātai
-\frac{207}{14}\approx -14.785714286
Tauwehe
-\frac{207}{14} = -14\frac{11}{14} = -14.785714285714286
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{9}{21}-\frac{1}{21}-\frac{11}{3}\right)\left(4+\frac{1}{2}\right)
Ko te maha noa iti rawa atu o 7 me 21 ko 21. Me tahuri \frac{3}{7} me \frac{1}{21} ki te hautau me te tautūnga 21.
\left(\frac{9-1}{21}-\frac{11}{3}\right)\left(4+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{9}{21} me \frac{1}{21}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{8}{21}-\frac{11}{3}\right)\left(4+\frac{1}{2}\right)
Tangohia te 1 i te 9, ka 8.
\left(\frac{8}{21}-\frac{77}{21}\right)\left(4+\frac{1}{2}\right)
Ko te maha noa iti rawa atu o 21 me 3 ko 21. Me tahuri \frac{8}{21} me \frac{11}{3} ki te hautau me te tautūnga 21.
\frac{8-77}{21}\left(4+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{8}{21} me \frac{77}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{-69}{21}\left(4+\frac{1}{2}\right)
Tangohia te 77 i te 8, ka -69.
-\frac{23}{7}\left(4+\frac{1}{2}\right)
Whakahekea te hautanga \frac{-69}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{23}{7}\left(\frac{8}{2}+\frac{1}{2}\right)
Me tahuri te 4 ki te hautau \frac{8}{2}.
-\frac{23}{7}\times \frac{8+1}{2}
Tā te mea he rite te tauraro o \frac{8}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{23}{7}\times \frac{9}{2}
Tāpirihia te 8 ki te 1, ka 9.
\frac{-23\times 9}{7\times 2}
Me whakarea te -\frac{23}{7} ki te \frac{9}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-207}{14}
Mahia ngā whakarea i roto i te hautanga \frac{-23\times 9}{7\times 2}.
-\frac{207}{14}
Ka taea te hautanga \frac{-207}{14} te tuhi anō ko -\frac{207}{14} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}