Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whātahi e ai ki p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

det(\left(\begin{matrix}m&n&p\\3&0&6\\1&3&2\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga hauroki.
\left(\begin{matrix}m&n&p&m&n\\3&0&6&3&0\\1&3&2&1&3\end{matrix}\right)
Whakaroatia te poukapa taketake mā te tāruarua i ngā tīwae tuatahi e rua hei tīwae tuawhā me te tuarima.
n\times 6+p\times 3\times 3=6n+9p
Tīmata atu i te tāurunga mauī o runga, whakareatia whakararo i ngā hauroki, ka tāpiri i ngā hua ka puta.
3\times 6m+2\times 3n=18m+6n
Tīmata atu i te tāurunga mauī o raro, whakareatia whakarunga i ngā hauroki, ka tāpiri i ngā hua ka puta.
6n+9p-\left(18m+6n\right)
Tangohia te tapeke o ngā hauroki whakarunga mai i te tapeke o ngā hua hauroki whakararo.
9p-18m
Tango 18m+6n mai i 6n+9p.
det(\left(\begin{matrix}m&n&p\\3&0&6\\1&3&2\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga whakaroha ā-tauriki (te tikanga whakaroha ā-tauwehe tahi rānei).
mdet(\left(\begin{matrix}0&6\\3&2\end{matrix}\right))-ndet(\left(\begin{matrix}3&6\\1&2\end{matrix}\right))+pdet(\left(\begin{matrix}3&0\\1&3\end{matrix}\right))
Hei whakaroha mā ngā tauriki, me whakarea ia huānga o te haupae tuatahi ki tana tauriki, arā, ko te tau whakatau o te poukapa 2\times 2 i hangā mā te muku i te haupae me te tīwae i roto anō taua huānga, kātahi ka whakarea ki te tohu tūnga o taua huānga.
m\left(-3\times 6\right)-n\left(3\times 2-6\right)+p\times 3\times 3
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te ad-bc te tau whakatau.
m\left(-18\right)+p\times 9
Whakarūnātia.
9p-18m
Tāpirihia ngā kīanga tau hei kimi i te otinga whakamutunga.