\left| \begin{array} { c c c } { 265 } & { 240 } & { 219 } \\ { 240 } & { 225 } & { 198 } \\ { 219 } & { 198 } & { 181 } \end{array} \right|
Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
det(\left(\begin{matrix}265&240&219\\240&225&198\\219&198&181\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga hauroki.
\left(\begin{matrix}265&240&219&265&240\\240&225&198&240&225\\219&198&181&219&198\end{matrix}\right)
Whakaroatia te poukapa taketake mā te tāruarua i ngā tīwae tuatahi e rua hei tīwae tuawhā me te tuarima.
265\times 225\times 181+240\times 198\times 219+219\times 240\times 198=31605885
Tīmata atu i te tāurunga mauī o runga, whakareatia whakararo i ngā hauroki, ka tāpiri i ngā hua ka puta.
219\times 225\times 219+198\times 198\times 265+181\times 240\times 240=31605885
Tīmata atu i te tāurunga mauī o raro, whakareatia whakarunga i ngā hauroki, ka tāpiri i ngā hua ka puta.
31605885-31605885
Tangohia te tapeke o ngā hauroki whakarunga mai i te tapeke o ngā hua hauroki whakararo.
0
Tango 31605885 mai i 31605885.
det(\left(\begin{matrix}265&240&219\\240&225&198\\219&198&181\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga whakaroha ā-tauriki (te tikanga whakaroha ā-tauwehe tahi rānei).
265det(\left(\begin{matrix}225&198\\198&181\end{matrix}\right))-240det(\left(\begin{matrix}240&198\\219&181\end{matrix}\right))+219det(\left(\begin{matrix}240&225\\219&198\end{matrix}\right))
Hei whakaroha mā ngā tauriki, me whakarea ia huānga o te haupae tuatahi ki tana tauriki, arā, ko te tau whakatau o te poukapa 2\times 2 i hangā mā te muku i te haupae me te tīwae i roto anō taua huānga, kātahi ka whakarea ki te tohu tūnga o taua huānga.
265\left(225\times 181-198\times 198\right)-240\left(240\times 181-219\times 198\right)+219\left(240\times 198-219\times 225\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te ad-bc te tau whakatau.
265\times 1521-240\times 78+219\left(-1755\right)
Whakarūnātia.
0
Tāpirihia ngā kīanga tau hei kimi i te otinga whakamutunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}