\left| \begin{array} { c c c } { - 1 } & { - 2 } & { - 3 } \\ { - 2 } & { - 3 } & { - 5 } \\ { - 3 } & { - 4 } & { - 7 } \end{array} \right|
Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga hauroki.
\left(\begin{matrix}-1&-2&-3&-1&-2\\-2&-3&-5&-2&-3\\-3&-4&-7&-3&-4\end{matrix}\right)
Whakaroatia te poukapa taketake mā te tāruarua i ngā tīwae tuatahi e rua hei tīwae tuawhā me te tuarima.
-\left(-3\right)\left(-7\right)-2\left(-5\right)\left(-3\right)-3\left(-2\right)\left(-4\right)=-75
Tīmata atu i te tāurunga mauī o runga, whakareatia whakararo i ngā hauroki, ka tāpiri i ngā hua ka puta.
-3\left(-3\right)\left(-3\right)-4\left(-5\right)\left(-1\right)-7\left(-2\right)\left(-2\right)=-75
Tīmata atu i te tāurunga mauī o raro, whakareatia whakarunga i ngā hauroki, ka tāpiri i ngā hua ka puta.
-75-\left(-75\right)
Tangohia te tapeke o ngā hauroki whakarunga mai i te tapeke o ngā hua hauroki whakararo.
0
Tango -75 mai i -75.
det(\left(\begin{matrix}-1&-2&-3\\-2&-3&-5\\-3&-4&-7\end{matrix}\right))
Kimihia te tau whakatau o te poukapa mā te whakamahi i te tikanga whakaroha ā-tauriki (te tikanga whakaroha ā-tauwehe tahi rānei).
-det(\left(\begin{matrix}-3&-5\\-4&-7\end{matrix}\right))-\left(-2det(\left(\begin{matrix}-2&-5\\-3&-7\end{matrix}\right))\right)-3det(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))
Hei whakaroha mā ngā tauriki, me whakarea ia huānga o te haupae tuatahi ki tana tauriki, arā, ko te tau whakatau o te poukapa 2\times 2 i hangā mā te muku i te haupae me te tīwae i roto anō taua huānga, kātahi ka whakarea ki te tohu tūnga o taua huānga.
-\left(-3\left(-7\right)-\left(-4\left(-5\right)\right)\right)-\left(-2\left(-2\left(-7\right)-\left(-3\left(-5\right)\right)\right)\right)-3\left(-2\left(-4\right)-\left(-3\left(-3\right)\right)\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te ad-bc te tau whakatau.
-1-\left(-2\left(-1\right)\right)-3\left(-1\right)
Whakarūnātia.
0
Tāpirihia ngā kīanga tau hei kimi i te otinga whakamutunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}