\left\{ \begin{array}{l}{ x - 2 ( x + y ) = 3 y - 2 }\\{ \frac { x } { 3 } + \frac { y } { 2 } = 3 }\end{array} \right.
Whakaoti mō x, y
x=12
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2x-2y=3y-2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+y.
-x-2y=3y-2
Pahekotia te x me -2x, ka -x.
-x-2y-3y=-2
Tangohia te 3y mai i ngā taha e rua.
-x-5y=-2
Pahekotia te -2y me -3y, ka -5y.
2x+3y=18
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
-x-5y=-2,2x+3y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-5y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=5y-2
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=-\left(5y-2\right)
Whakawehea ngā taha e rua ki te -1.
x=-5y+2
Whakareatia -1 ki te 5y-2.
2\left(-5y+2\right)+3y=18
Whakakapia te -5y+2 mō te x ki tērā atu whārite, 2x+3y=18.
-10y+4+3y=18
Whakareatia 2 ki te -5y+2.
-7y+4=18
Tāpiri -10y ki te 3y.
-7y=14
Me tango 4 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -7.
x=-5\left(-2\right)+2
Whakaurua te -2 mō y ki x=-5y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10+2
Whakareatia -5 ki te -2.
x=12
Tāpiri 2 ki te 10.
x=12,y=-2
Kua oti te pūnaha te whakatau.
x-2x-2y=3y-2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+y.
-x-2y=3y-2
Pahekotia te x me -2x, ka -x.
-x-2y-3y=-2
Tangohia te 3y mai i ngā taha e rua.
-x-5y=-2
Pahekotia te -2y me -3y, ka -5y.
2x+3y=18
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
-x-5y=-2,2x+3y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right))\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-5\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3-\left(-5\times 2\right)}&-\frac{-5}{-3-\left(-5\times 2\right)}\\-\frac{2}{-3-\left(-5\times 2\right)}&-\frac{1}{-3-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{5}{7}\\-\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-2\right)+\frac{5}{7}\times 18\\-\frac{2}{7}\left(-2\right)-\frac{1}{7}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=-2
Tangohia ngā huānga poukapa x me y.
x-2x-2y=3y-2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+y.
-x-2y=3y-2
Pahekotia te x me -2x, ka -x.
-x-2y-3y=-2
Tangohia te 3y mai i ngā taha e rua.
-x-5y=-2
Pahekotia te -2y me -3y, ka -5y.
2x+3y=18
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
-x-5y=-2,2x+3y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-1\right)x+2\left(-5\right)y=2\left(-2\right),-2x-3y=-18
Kia ōrite ai a -x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-2x-10y=-4,-2x-3y=-18
Whakarūnātia.
-2x+2x-10y+3y=-4+18
Me tango -2x-3y=-18 mai i -2x-10y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y+3y=-4+18
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-4+18
Tāpiri -10y ki te 3y.
-7y=14
Tāpiri -4 ki te 18.
y=-2
Whakawehea ngā taha e rua ki te -7.
2x+3\left(-2\right)=18
Whakaurua te -2 mō y ki 2x+3y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-6=18
Whakareatia 3 ki te -2.
2x=24
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=12
Whakawehea ngā taha e rua ki te 2.
x=12,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}