\left\{ \begin{array}{l}{ x \sqrt { 3 } - 3 y = \sqrt { 3 } }\\{ x + y \sqrt { 3 } = 1 }\end{array} \right.
Whakaoti mō x, y
x=1
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\sqrt{3}x-3y=\sqrt{3}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\sqrt{3}x=3y+\sqrt{3}
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{\sqrt{3}}{3}\left(3y+\sqrt{3}\right)
Whakawehea ngā taha e rua ki te \sqrt{3}.
x=\sqrt{3}y+1
Whakareatia \frac{\sqrt{3}}{3} ki te 3y+\sqrt{3}.
\sqrt{3}y+1+\sqrt{3}y=1
Whakakapia te \sqrt{3}y+1 mō te x ki tērā atu whārite, x+\sqrt{3}y=1.
2\sqrt{3}y+1=1
Tāpiri \sqrt{3}y ki te \sqrt{3}y.
2\sqrt{3}y=0
Me tango 1 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 2\sqrt{3}.
x=1
Whakaurua te 0 mō y ki x=\sqrt{3}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1,y=0
Kua oti te pūnaha te whakatau.
\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+\sqrt{3}\sqrt{3}y=\sqrt{3}
Kia ōrite ai a \sqrt{3}x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \sqrt{3}.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+3y=\sqrt{3}
Whakarūnātia.
\sqrt{3}x+\left(-\sqrt{3}\right)x-3y-3y=\sqrt{3}-\sqrt{3}
Me tango \sqrt{3}x+3y=\sqrt{3} mai i \sqrt{3}x-3y=\sqrt{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-3y=\sqrt{3}-\sqrt{3}
Tāpiri \sqrt{3}x ki te -\sqrt{3}x. Ka whakakore atu ngā kupu \sqrt{3}x me -\sqrt{3}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=\sqrt{3}-\sqrt{3}
Tāpiri -3y ki te -3y.
-6y=0
Tāpiri \sqrt{3} ki te -\sqrt{3}.
y=0
Whakawehea ngā taha e rua ki te -6.
x=1
Whakaurua te 0 mō y ki x+\sqrt{3}y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}