Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=\frac{1}{2}
Whakaarohia te whārite tuatoru. Whakawehea ngā taha e rua ki te 2.
\frac{1}{2}+3z=14
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
3z=14-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
3z=\frac{27}{2}
Tangohia te \frac{1}{2} i te 14, ka \frac{27}{2}.
z=\frac{\frac{27}{2}}{3}
Whakawehea ngā taha e rua ki te 3.
z=\frac{27}{2\times 3}
Tuhia te \frac{\frac{27}{2}}{3} hei hautanga kotahi.
z=\frac{27}{6}
Whakareatia te 2 ki te 3, ka 6.
z=\frac{9}{2}
Whakahekea te hautanga \frac{27}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x+\frac{1}{2}+5\times \frac{9}{2}=15
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x+\frac{1}{2}+\frac{45}{2}=15
Whakareatia te 5 ki te \frac{9}{2}, ka \frac{45}{2}.
x+23=15
Tāpirihia te \frac{1}{2} ki te \frac{45}{2}, ka 23.
x=15-23
Tangohia te 23 mai i ngā taha e rua.
x=-8
Tangohia te 23 i te 15, ka -8.
x=-8 y=\frac{1}{2} z=\frac{9}{2}
Kua oti te pūnaha te whakatau.