\left\{ \begin{array}{l}{ x + y + 5 z = 15 }\\{ y + 3 z = 14 }\\{ 2 y = 1 }\end{array} \right.
Whakaoti mō x, y, z
x=-8
y=\frac{1}{2}=0.5
z = \frac{9}{2} = 4\frac{1}{2} = 4.5
Tohaina
Kua tāruatia ki te papatopenga
y=\frac{1}{2}
Whakaarohia te whārite tuatoru. Whakawehea ngā taha e rua ki te 2.
\frac{1}{2}+3z=14
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
3z=14-\frac{1}{2}
Tangohia te \frac{1}{2} mai i ngā taha e rua.
3z=\frac{27}{2}
Tangohia te \frac{1}{2} i te 14, ka \frac{27}{2}.
z=\frac{\frac{27}{2}}{3}
Whakawehea ngā taha e rua ki te 3.
z=\frac{27}{2\times 3}
Tuhia te \frac{\frac{27}{2}}{3} hei hautanga kotahi.
z=\frac{27}{6}
Whakareatia te 2 ki te 3, ka 6.
z=\frac{9}{2}
Whakahekea te hautanga \frac{27}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x+\frac{1}{2}+5\times \frac{9}{2}=15
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x+\frac{1}{2}+\frac{45}{2}=15
Whakareatia te 5 ki te \frac{9}{2}, ka \frac{45}{2}.
x+23=15
Tāpirihia te \frac{1}{2} ki te \frac{45}{2}, ka 23.
x=15-23
Tangohia te 23 mai i ngā taha e rua.
x=-8
Tangohia te 23 i te 15, ka -8.
x=-8 y=\frac{1}{2} z=\frac{9}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}