\left\{ \begin{array}{l}{ x + 2 y = - 5 }\\{ y - 3 z = - 11 }\\{ - 2 x - 6 y + 5 z = - 1 }\end{array} \right.
Whakaoti mō x, y, z
x=-181
y=88
z=33
Tohaina
Kua tāruatia ki te papatopenga
x=-2y-5
Me whakaoti te x+2y=-5 mō x.
-2\left(-2y-5\right)-6y+5z=-1
Whakakapia te -2y-5 mō te x i te whārite -2x-6y+5z=-1.
y=3z-11 z=\frac{2}{5}y-\frac{11}{5}
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō z.
z=\frac{2}{5}\left(3z-11\right)-\frac{11}{5}
Whakakapia te 3z-11 mō te y i te whārite z=\frac{2}{5}y-\frac{11}{5}.
z=33
Me whakaoti te z=\frac{2}{5}\left(3z-11\right)-\frac{11}{5} mō z.
y=3\times 33-11
Whakakapia te 33 mō te z i te whārite y=3z-11.
y=88
Tātaitia te y i te y=3\times 33-11.
x=-2\times 88-5
Whakakapia te 88 mō te y i te whārite x=-2y-5.
x=-181
Tātaitia te x i te x=-2\times 88-5.
x=-181 y=88 z=33
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}