\left\{ \begin{array}{l}{ 4 x + 7 y + 8 z = 143 }\\{ 6 x + y + z = 52 }\\{ 3 x + 5 y + 4 z = 91 }\end{array} \right.
Whakaoti mō x, y, z
x=6
y=9
z=7
Tohaina
Kua tāruatia ki te papatopenga
6x+y+z=52 4x+7y+8z=143 3x+5y+4z=91
Me raupapa anō ngā whārite.
y=-6x-z+52
Me whakaoti te 6x+y+z=52 mō y.
4x+7\left(-6x-z+52\right)+8z=143 3x+5\left(-6x-z+52\right)+4z=91
Whakakapia te -6x-z+52 mō te y i te whārite tuarua me te tuatoru.
x=\frac{221}{38}+\frac{1}{38}z z=-27x+169
Me whakaoti ēnei whārite mō x me z takitahi.
z=-27\left(\frac{221}{38}+\frac{1}{38}z\right)+169
Whakakapia te \frac{221}{38}+\frac{1}{38}z mō te x i te whārite z=-27x+169.
z=7
Me whakaoti te z=-27\left(\frac{221}{38}+\frac{1}{38}z\right)+169 mō z.
x=\frac{221}{38}+\frac{1}{38}\times 7
Whakakapia te 7 mō te z i te whārite x=\frac{221}{38}+\frac{1}{38}z.
x=6
Tātaitia te x i te x=\frac{221}{38}+\frac{1}{38}\times 7.
y=-6\times 6-7+52
Whakakapia te 6 mō te x me te 7 mō z i te whārite y=-6x-z+52.
y=9
Tātaitia te y i te y=-6\times 6-7+52.
x=6 y=9 z=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}