\left\{ \begin{array}{l}{ 2 ( x - y ) - 3 = 3 x + 4 y D }\\{ x + y = 2 ( 2 ) }\end{array} \right.
Whakaoti mō x, y
x=\frac{16D+11}{4D+1}
y=-\frac{7}{4D+1}
D\neq -\frac{1}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-2y-3=3x+4yD
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-2y-3-3x=4yD
Tangohia te 3x mai i ngā taha e rua.
-x-2y-3=4yD
Pahekotia te 2x me -3x, ka -x.
-x-2y-3-4yD=0
Tangohia te 4yD mai i ngā taha e rua.
-x-2y-4yD=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x+\left(-2-4D\right)y=3
Pahekotia ngā kīanga tau katoa e whai ana i te x,y.
x+y=4
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 2, ka 4.
-x+\left(-4D-2\right)y=3,x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+\left(-4D-2\right)y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=\left(4D+2\right)y+3
Me tango -2y-4yD mai i ngā taha e rua o te whārite.
x=-\left(\left(4D+2\right)y+3\right)
Whakawehea ngā taha e rua ki te -1.
x=\left(-4D-2\right)y-3
Whakareatia -1 ki te 2y+4yD+3.
\left(-4D-2\right)y-3+y=4
Whakakapia te -2y-4yD-3 mō te x ki tērā atu whārite, x+y=4.
\left(-4D-1\right)y-3=4
Tāpiri -2y-4yD ki te y.
\left(-4D-1\right)y=7
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=-\frac{7}{4D+1}
Whakawehea ngā taha e rua ki te -1-4D.
x=\left(-4D-2\right)\left(-\frac{7}{4D+1}\right)-3
Whakaurua te -\frac{7}{1+4D} mō y ki x=\left(-4D-2\right)y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{14\left(2D+1\right)}{4D+1}-3
Whakareatia -2-4D ki te -\frac{7}{1+4D}.
x=\frac{16D+11}{4D+1}
Tāpiri -3 ki te \frac{14\left(1+2D\right)}{1+4D}.
x=\frac{16D+11}{4D+1},y=-\frac{7}{4D+1}
Kua oti te pūnaha te whakatau.
2x-2y-3=3x+4yD
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-2y-3-3x=4yD
Tangohia te 3x mai i ngā taha e rua.
-x-2y-3=4yD
Pahekotia te 2x me -3x, ka -x.
-x-2y-3-4yD=0
Tangohia te 4yD mai i ngā taha e rua.
-x-2y-4yD=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x+\left(-2-4D\right)y=3
Pahekotia ngā kīanga tau katoa e whai ana i te x,y.
x+y=4
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 2, ka 4.
-x+\left(-4D-2\right)y=3,x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right))\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-2-4D\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-4D-2\\1&1\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-\left(-4D-2\right)}&-\frac{-4D-2}{-1-\left(-4D-2\right)}\\-\frac{1}{-1-\left(-4D-2\right)}&-\frac{1}{-1-\left(-4D-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4D+1}&\frac{2\left(2D+1\right)}{4D+1}\\-\frac{1}{4D+1}&-\frac{1}{4D+1}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4D+1}\times 3+\frac{2\left(2D+1\right)}{4D+1}\times 4\\\left(-\frac{1}{4D+1}\right)\times 3+\left(-\frac{1}{4D+1}\right)\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16D+11}{4D+1}\\-\frac{7}{4D+1}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16D+11}{4D+1},y=-\frac{7}{4D+1}
Tangohia ngā huānga poukapa x me y.
2x-2y-3=3x+4yD
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-2y-3-3x=4yD
Tangohia te 3x mai i ngā taha e rua.
-x-2y-3=4yD
Pahekotia te 2x me -3x, ka -x.
-x-2y-3-4yD=0
Tangohia te 4yD mai i ngā taha e rua.
-x-2y-4yD=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x+\left(-2-4D\right)y=3
Pahekotia ngā kīanga tau katoa e whai ana i te x,y.
x+y=4
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 2, ka 4.
-x+\left(-4D-2\right)y=3,x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x+\left(-4D-2\right)y=3,-x-y=-4
Kia ōrite ai a -x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-x+x+\left(-4D-2\right)y+y=3+4
Me tango -x-y=-4 mai i -x+\left(-4D-2\right)y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-4D-2\right)y+y=3+4
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(-4D-1\right)y=3+4
Tāpiri -2y-4yD ki te y.
\left(-4D-1\right)y=7
Tāpiri 3 ki te 4.
y=-\frac{7}{4D+1}
Whakawehea ngā taha e rua ki te -1-4D.
x-\frac{7}{4D+1}=4
Whakaurua te -\frac{7}{1+4D} mō y ki x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{16D+11}{4D+1}
Me tāpiri \frac{7}{1+4D} ki ngā taha e rua o te whārite.
x=\frac{16D+11}{4D+1},y=-\frac{7}{4D+1}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}