\left\{ \begin{array}{l}{ \frac { x } { 3 } + \frac { y } { 4 } = \frac { 5 } { 6 } }\\{ \frac { 3 x + 20 y } { 5 } - \frac { 8 y + 1 } { 3 } = \frac { 12 x + 16 y } { 15 } }\end{array} \right.
Whakaoti mō x, y
x=1
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+20y.
9x+60y-40y-5=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 8y+1.
9x+20y-5=12x+16y
Pahekotia te 60y me -40y, ka 20y.
9x+20y-5-12x=16y
Tangohia te 12x mai i ngā taha e rua.
-3x+20y-5=16y
Pahekotia te 9x me -12x, ka -3x.
-3x+20y-5-16y=0
Tangohia te 16y mai i ngā taha e rua.
-3x+4y-5=0
Pahekotia te 20y me -16y, ka 4y.
-3x+4y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+3y=10,-3x+4y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+10
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+10\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{5}{2}
Whakareatia \frac{1}{4} ki te -3y+10.
-3\left(-\frac{3}{4}y+\frac{5}{2}\right)+4y=5
Whakakapia te -\frac{3y}{4}+\frac{5}{2} mō te x ki tērā atu whārite, -3x+4y=5.
\frac{9}{4}y-\frac{15}{2}+4y=5
Whakareatia -3 ki te -\frac{3y}{4}+\frac{5}{2}.
\frac{25}{4}y-\frac{15}{2}=5
Tāpiri \frac{9y}{4} ki te 4y.
\frac{25}{4}y=\frac{25}{2}
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times 2+\frac{5}{2}
Whakaurua te 2 mō y ki x=-\frac{3}{4}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+5}{2}
Whakareatia -\frac{3}{4} ki te 2.
x=1
Tāpiri \frac{5}{2} ki te -\frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=2
Kua oti te pūnaha te whakatau.
4x+3y=10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+20y.
9x+60y-40y-5=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 8y+1.
9x+20y-5=12x+16y
Pahekotia te 60y me -40y, ka 20y.
9x+20y-5-12x=16y
Tangohia te 12x mai i ngā taha e rua.
-3x+20y-5=16y
Pahekotia te 9x me -12x, ka -3x.
-3x+20y-5-16y=0
Tangohia te 16y mai i ngā taha e rua.
-3x+4y-5=0
Pahekotia te 20y me -16y, ka 4y.
-3x+4y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+3y=10,-3x+4y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}4&3\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\-3&4\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-3\left(-3\right)}&-\frac{3}{4\times 4-3\left(-3\right)}\\-\frac{-3}{4\times 4-3\left(-3\right)}&\frac{4}{4\times 4-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&-\frac{3}{25}\\\frac{3}{25}&\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 10-\frac{3}{25}\times 5\\\frac{3}{25}\times 10+\frac{4}{25}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
4x+3y=10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,6.
3\left(3x+20y\right)-5\left(8y+1\right)=12x+16y
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3,15.
9x+60y-5\left(8y+1\right)=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x+20y.
9x+60y-40y-5=12x+16y
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 8y+1.
9x+20y-5=12x+16y
Pahekotia te 60y me -40y, ka 20y.
9x+20y-5-12x=16y
Tangohia te 12x mai i ngā taha e rua.
-3x+20y-5=16y
Pahekotia te 9x me -12x, ka -3x.
-3x+20y-5-16y=0
Tangohia te 16y mai i ngā taha e rua.
-3x+4y-5=0
Pahekotia te 20y me -16y, ka 4y.
-3x+4y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+3y=10,-3x+4y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 4x-3\times 3y=-3\times 10,4\left(-3\right)x+4\times 4y=4\times 5
Kia ōrite ai a 4x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-12x-9y=-30,-12x+16y=20
Whakarūnātia.
-12x+12x-9y-16y=-30-20
Me tango -12x+16y=20 mai i -12x-9y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-16y=-30-20
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25y=-30-20
Tāpiri -9y ki te -16y.
-25y=-50
Tāpiri -30 ki te -20.
y=2
Whakawehea ngā taha e rua ki te -25.
-3x+4\times 2=5
Whakaurua te 2 mō y ki -3x+4y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+8=5
Whakareatia 4 ki te 2.
-3x=-3
Me tango 8 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}