\left\{ \begin{array} { r } { x + y - z = 0 } \\ { 3 x + 2 y + z = 4 } \\ { x - 3 y + 4 z = 5 } \end{array} \right.
Whakaoti mō x, y, z
x=1
y=0
z=1
Tohaina
Kua tāruatia ki te papatopenga
x=-y+z
Me whakaoti te x+y-z=0 mō x.
3\left(-y+z\right)+2y+z=4 -y+z-3y+4z=5
Whakakapia te -y+z mō te x i te whārite tuarua me te tuatoru.
y=-4+4z z=\frac{4}{5}y+1
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{4}{5}\left(-4+4z\right)+1
Whakakapia te -4+4z mō te y i te whārite z=\frac{4}{5}y+1.
z=1
Me whakaoti te z=\frac{4}{5}\left(-4+4z\right)+1 mō z.
y=-4+4\times 1
Whakakapia te 1 mō te z i te whārite y=-4+4z.
y=0
Tātaitia te y i te y=-4+4\times 1.
x=-0+1
Whakakapia te 0 mō te y me te 1 mō z i te whārite x=-y+z.
x=1
Tātaitia te x i te x=-0+1.
x=1 y=0 z=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}