Tīpoka ki ngā ihirangi matua
Whakaoti mō u, v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

u-30v=-65,-3u+80v=165
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
u-30v=-65
Kōwhiria tētahi o ngā whārite ka whakaotia mō te u mā te wehe i te u i te taha mauī o te tohu ōrite.
u=30v-65
Me tāpiri 30v ki ngā taha e rua o te whārite.
-3\left(30v-65\right)+80v=165
Whakakapia te 30v-65 mō te u ki tērā atu whārite, -3u+80v=165.
-90v+195+80v=165
Whakareatia -3 ki te 30v-65.
-10v+195=165
Tāpiri -90v ki te 80v.
-10v=-30
Me tango 195 mai i ngā taha e rua o te whārite.
v=3
Whakawehea ngā taha e rua ki te -10.
u=30\times 3-65
Whakaurua te 3 mō v ki u=30v-65. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u=90-65
Whakareatia 30 ki te 3.
u=25
Tāpiri -65 ki te 90.
u=25,v=3
Kua oti te pūnaha te whakatau.
u-30v=-65,-3u+80v=165
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-65\\165\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-30\\-3&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-\left(-30\left(-3\right)\right)}&-\frac{-30}{80-\left(-30\left(-3\right)\right)}\\-\frac{-3}{80-\left(-30\left(-3\right)\right)}&\frac{1}{80-\left(-30\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8&-3\\-\frac{3}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8\left(-65\right)-3\times 165\\-\frac{3}{10}\left(-65\right)-\frac{1}{10}\times 165\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}25\\3\end{matrix}\right)
Mahia ngā tātaitanga.
u=25,v=3
Tangohia ngā huānga poukapa u me v.
u-30v=-65,-3u+80v=165
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3u-3\left(-30\right)v=-3\left(-65\right),-3u+80v=165
Kia ōrite ai a u me -3u, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3u+90v=195,-3u+80v=165
Whakarūnātia.
-3u+3u+90v-80v=195-165
Me tango -3u+80v=165 mai i -3u+90v=195 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
90v-80v=195-165
Tāpiri -3u ki te 3u. Ka whakakore atu ngā kupu -3u me 3u, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10v=195-165
Tāpiri 90v ki te -80v.
10v=30
Tāpiri 195 ki te -165.
v=3
Whakawehea ngā taha e rua ki te 10.
-3u+80\times 3=165
Whakaurua te 3 mō v ki -3u+80v=165. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
-3u+240=165
Whakareatia 80 ki te 3.
-3u=-75
Me tango 240 mai i ngā taha e rua o te whārite.
u=25
Whakawehea ngā taha e rua ki te -3.
u=25,v=3
Kua oti te pūnaha te whakatau.