\left\{ \begin{array} { r } { 9 x - 6 y = 3 } \\ { - 3 x - 6 y = 15 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-6y=3,-3x-6y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-6y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=6y+3
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(6y+3\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{2}{3}y+\frac{1}{3}
Whakareatia \frac{1}{9} ki te 6y+3.
-3\left(\frac{2}{3}y+\frac{1}{3}\right)-6y=15
Whakakapia te \frac{2y+1}{3} mō te x ki tērā atu whārite, -3x-6y=15.
-2y-1-6y=15
Whakareatia -3 ki te \frac{2y+1}{3}.
-8y-1=15
Tāpiri -2y ki te -6y.
-8y=16
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -8.
x=\frac{2}{3}\left(-2\right)+\frac{1}{3}
Whakaurua te -2 mō y ki x=\frac{2}{3}y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+1}{3}
Whakareatia \frac{2}{3} ki te -2.
x=-1
Tāpiri \frac{1}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
9x-6y=3,-3x-6y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right))\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-6\\-3&-6\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{9\left(-6\right)-\left(-6\left(-3\right)\right)}&-\frac{-6}{9\left(-6\right)-\left(-6\left(-3\right)\right)}\\-\frac{-3}{9\left(-6\right)-\left(-6\left(-3\right)\right)}&\frac{9}{9\left(-6\right)-\left(-6\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&-\frac{1}{12}\\-\frac{1}{24}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 3-\frac{1}{12}\times 15\\-\frac{1}{24}\times 3-\frac{1}{8}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
9x-6y=3,-3x-6y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x+3x-6y+6y=3-15
Me tango -3x-6y=15 mai i 9x-6y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9x+3x=3-15
Tāpiri -6y ki te 6y. Ka whakakore atu ngā kupu -6y me 6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12x=3-15
Tāpiri 9x ki te 3x.
12x=-12
Tāpiri 3 ki te -15.
x=-1
Whakawehea ngā taha e rua ki te 12.
-3\left(-1\right)-6y=15
Whakaurua te -1 mō x ki -3x-6y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3-6y=15
Whakareatia -3 ki te -1.
-6y=12
Me tango 3 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -6.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}