\left\{ \begin{array} { r } { 7 x + 3 y = - 15 } \\ { 12 y - 5 x = 39 } \end{array} \right.
Whakaoti mō x, y
x=-3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+3y=-15,-5x+12y=39
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+3y=-15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-3y-15
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-3y-15\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{3}{7}y-\frac{15}{7}
Whakareatia \frac{1}{7} ki te -3y-15.
-5\left(-\frac{3}{7}y-\frac{15}{7}\right)+12y=39
Whakakapia te \frac{-3y-15}{7} mō te x ki tērā atu whārite, -5x+12y=39.
\frac{15}{7}y+\frac{75}{7}+12y=39
Whakareatia -5 ki te \frac{-3y-15}{7}.
\frac{99}{7}y+\frac{75}{7}=39
Tāpiri \frac{15y}{7} ki te 12y.
\frac{99}{7}y=\frac{198}{7}
Me tango \frac{75}{7} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{99}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{7}\times 2-\frac{15}{7}
Whakaurua te 2 mō y ki x=-\frac{3}{7}y-\frac{15}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-6-15}{7}
Whakareatia -\frac{3}{7} ki te 2.
x=-3
Tāpiri -\frac{15}{7} ki te -\frac{6}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=2
Kua oti te pūnaha te whakatau.
7x+3y=-15,-5x+12y=39
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\39\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&3\\-5&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7\times 12-3\left(-5\right)}&-\frac{3}{7\times 12-3\left(-5\right)}\\-\frac{-5}{7\times 12-3\left(-5\right)}&\frac{7}{7\times 12-3\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}&-\frac{1}{33}\\\frac{5}{99}&\frac{7}{99}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}\left(-15\right)-\frac{1}{33}\times 39\\\frac{5}{99}\left(-15\right)+\frac{7}{99}\times 39\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=2
Tangohia ngā huānga poukapa x me y.
7x+3y=-15,-5x+12y=39
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 7x-5\times 3y=-5\left(-15\right),7\left(-5\right)x+7\times 12y=7\times 39
Kia ōrite ai a 7x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-35x-15y=75,-35x+84y=273
Whakarūnātia.
-35x+35x-15y-84y=75-273
Me tango -35x+84y=273 mai i -35x-15y=75 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-84y=75-273
Tāpiri -35x ki te 35x. Ka whakakore atu ngā kupu -35x me 35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-99y=75-273
Tāpiri -15y ki te -84y.
-99y=-198
Tāpiri 75 ki te -273.
y=2
Whakawehea ngā taha e rua ki te -99.
-5x+12\times 2=39
Whakaurua te 2 mō y ki -5x+12y=39. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+24=39
Whakareatia 12 ki te 2.
-5x=15
Me tango 24 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te -5.
x=-3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}