Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x-5y=14,-3x+5y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-5y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=5y+14
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(5y+14\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{6}y+\frac{7}{3}
Whakareatia \frac{1}{6} ki te 5y+14.
-3\left(\frac{5}{6}y+\frac{7}{3}\right)+5y=-2
Whakakapia te \frac{5y}{6}+\frac{7}{3} mō te x ki tērā atu whārite, -3x+5y=-2.
-\frac{5}{2}y-7+5y=-2
Whakareatia -3 ki te \frac{5y}{6}+\frac{7}{3}.
\frac{5}{2}y-7=-2
Tāpiri -\frac{5y}{2} ki te 5y.
\frac{5}{2}y=5
Me tāpiri 7 ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{6}\times 2+\frac{7}{3}
Whakaurua te 2 mō y ki x=\frac{5}{6}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5+7}{3}
Whakareatia \frac{5}{6} ki te 2.
x=4
Tāpiri \frac{7}{3} ki te \frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=2
Kua oti te pūnaha te whakatau.
6x-5y=14,-3x+5y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-5\\-3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-\left(-5\left(-3\right)\right)}&-\frac{-5}{6\times 5-\left(-5\left(-3\right)\right)}\\-\frac{-3}{6\times 5-\left(-5\left(-3\right)\right)}&\frac{6}{6\times 5-\left(-5\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 14+\frac{1}{3}\left(-2\right)\\\frac{1}{5}\times 14+\frac{2}{5}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
6x-5y=14,-3x+5y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 6x-3\left(-5\right)y=-3\times 14,6\left(-3\right)x+6\times 5y=6\left(-2\right)
Kia ōrite ai a 6x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
-18x+15y=-42,-18x+30y=-12
Whakarūnātia.
-18x+18x+15y-30y=-42+12
Me tango -18x+30y=-12 mai i -18x+15y=-42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-30y=-42+12
Tāpiri -18x ki te 18x. Ka whakakore atu ngā kupu -18x me 18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y=-42+12
Tāpiri 15y ki te -30y.
-15y=-30
Tāpiri -42 ki te 12.
y=2
Whakawehea ngā taha e rua ki te -15.
-3x+5\times 2=-2
Whakaurua te 2 mō y ki -3x+5y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+10=-2
Whakareatia 5 ki te 2.
-3x=-12
Me tango 10 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te -3.
x=4,y=2
Kua oti te pūnaha te whakatau.