Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x+y=4,x-4y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-y+4
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-y+4\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{6}y+\frac{2}{3}
Whakareatia \frac{1}{6} ki te -y+4.
-\frac{1}{6}y+\frac{2}{3}-4y=19
Whakakapia te -\frac{y}{6}+\frac{2}{3} mō te x ki tērā atu whārite, x-4y=19.
-\frac{25}{6}y+\frac{2}{3}=19
Tāpiri -\frac{y}{6} ki te -4y.
-\frac{25}{6}y=\frac{55}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
y=-\frac{22}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{25}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{6}\left(-\frac{22}{5}\right)+\frac{2}{3}
Whakaurua te -\frac{22}{5} mō y ki x=-\frac{1}{6}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{11}{15}+\frac{2}{3}
Whakareatia -\frac{1}{6} ki te -\frac{22}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{7}{5}
Tāpiri \frac{2}{3} ki te \frac{11}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{7}{5},y=-\frac{22}{5}
Kua oti te pūnaha te whakatau.
6x+y=4,x-4y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}6&1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&1\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{6\left(-4\right)-1}&-\frac{1}{6\left(-4\right)-1}\\-\frac{1}{6\left(-4\right)-1}&\frac{6}{6\left(-4\right)-1}\end{matrix}\right)\left(\begin{matrix}4\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\\frac{1}{25}&-\frac{6}{25}\end{matrix}\right)\left(\begin{matrix}4\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 4+\frac{1}{25}\times 19\\\frac{1}{25}\times 4-\frac{6}{25}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\\-\frac{22}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{7}{5},y=-\frac{22}{5}
Tangohia ngā huānga poukapa x me y.
6x+y=4,x-4y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+y=4,6x+6\left(-4\right)y=6\times 19
Kia ōrite ai a 6x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
6x+y=4,6x-24y=114
Whakarūnātia.
6x-6x+y+24y=4-114
Me tango 6x-24y=114 mai i 6x+y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+24y=4-114
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25y=4-114
Tāpiri y ki te 24y.
25y=-110
Tāpiri 4 ki te -114.
y=-\frac{22}{5}
Whakawehea ngā taha e rua ki te 25.
x-4\left(-\frac{22}{5}\right)=19
Whakaurua te -\frac{22}{5} mō y ki x-4y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{88}{5}=19
Whakareatia -4 ki te -\frac{22}{5}.
x=\frac{7}{5}
Me tango \frac{88}{5} mai i ngā taha e rua o te whārite.
x=\frac{7}{5},y=-\frac{22}{5}
Kua oti te pūnaha te whakatau.