Tīpoka ki ngā ihirangi matua
Whakaoti mō p, q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5p-q=7,-2p+3q=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5p-q=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te p mā te wehe i te p i te taha mauī o te tohu ōrite.
5p=q+7
Me tāpiri q ki ngā taha e rua o te whārite.
p=\frac{1}{5}\left(q+7\right)
Whakawehea ngā taha e rua ki te 5.
p=\frac{1}{5}q+\frac{7}{5}
Whakareatia \frac{1}{5} ki te q+7.
-2\left(\frac{1}{5}q+\frac{7}{5}\right)+3q=5
Whakakapia te \frac{7+q}{5} mō te p ki tērā atu whārite, -2p+3q=5.
-\frac{2}{5}q-\frac{14}{5}+3q=5
Whakareatia -2 ki te \frac{7+q}{5}.
\frac{13}{5}q-\frac{14}{5}=5
Tāpiri -\frac{2q}{5} ki te 3q.
\frac{13}{5}q=\frac{39}{5}
Me tāpiri \frac{14}{5} ki ngā taha e rua o te whārite.
q=3
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
p=\frac{1}{5}\times 3+\frac{7}{5}
Whakaurua te 3 mō q ki p=\frac{1}{5}q+\frac{7}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p=\frac{3+7}{5}
Whakareatia \frac{1}{5} ki te 3.
p=2
Tāpiri \frac{7}{5} ki te \frac{3}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
p=2,q=3
Kua oti te pūnaha te whakatau.
5p-q=7,-2p+3q=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 3-\left(-\left(-2\right)\right)}&\frac{5}{5\times 3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 7+\frac{1}{13}\times 5\\\frac{2}{13}\times 7+\frac{5}{13}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
p=2,q=3
Tangohia ngā huānga poukapa p me q.
5p-q=7,-2p+3q=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 5p-2\left(-1\right)q=-2\times 7,5\left(-2\right)p+5\times 3q=5\times 5
Kia ōrite ai a 5p me -2p, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-10p+2q=-14,-10p+15q=25
Whakarūnātia.
-10p+10p+2q-15q=-14-25
Me tango -10p+15q=25 mai i -10p+2q=-14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2q-15q=-14-25
Tāpiri -10p ki te 10p. Ka whakakore atu ngā kupu -10p me 10p, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13q=-14-25
Tāpiri 2q ki te -15q.
-13q=-39
Tāpiri -14 ki te -25.
q=3
Whakawehea ngā taha e rua ki te -13.
-2p+3\times 3=5
Whakaurua te 3 mō q ki -2p+3q=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
-2p+9=5
Whakareatia 3 ki te 3.
-2p=-4
Me tango 9 mai i ngā taha e rua o te whārite.
p=2
Whakawehea ngā taha e rua ki te -2.
p=2,q=3
Kua oti te pūnaha te whakatau.