\left\{ \begin{array} { r } { 4 x - 2 y = 6 } \\ { - 2 x + 2 y = 8 } \end{array} \right.
Whakaoti mō x, y
x=7
y=11
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-2y=6,-2x+2y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=2y+6
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y+6\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{4} ki te 6+2y.
-2\left(\frac{1}{2}y+\frac{3}{2}\right)+2y=8
Whakakapia te \frac{3+y}{2} mō te x ki tērā atu whārite, -2x+2y=8.
-y-3+2y=8
Whakareatia -2 ki te \frac{3+y}{2}.
y-3=8
Tāpiri -y ki te 2y.
y=11
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{1}{2}\times 11+\frac{3}{2}
Whakaurua te 11 mō y ki x=\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{11+3}{2}
Whakareatia \frac{1}{2} ki te 11.
x=7
Tāpiri \frac{3}{2} ki te \frac{11}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=7,y=11
Kua oti te pūnaha te whakatau.
4x-2y=6,-2x+2y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\-2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\left(-2\right)\right)}&-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}\\-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}&\frac{4}{4\times 2-\left(-2\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{2}\times 8\\\frac{1}{2}\times 6+8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=11
Tangohia ngā huānga poukapa x me y.
4x-2y=6,-2x+2y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 4x-2\left(-2\right)y=-2\times 6,4\left(-2\right)x+4\times 2y=4\times 8
Kia ōrite ai a 4x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-8x+4y=-12,-8x+8y=32
Whakarūnātia.
-8x+8x+4y-8y=-12-32
Me tango -8x+8y=32 mai i -8x+4y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-8y=-12-32
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=-12-32
Tāpiri 4y ki te -8y.
-4y=-44
Tāpiri -12 ki te -32.
y=11
Whakawehea ngā taha e rua ki te -4.
-2x+2\times 11=8
Whakaurua te 11 mō y ki -2x+2y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+22=8
Whakareatia 2 ki te 11.
-2x=-14
Me tango 22 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te -2.
x=7,y=11
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}