\left\{ \begin{array} { l } { y - 2 x = 4 } \\ { 7 x - y = 1 } \end{array} \right.
Whakaoti mō y, x
x=1
y=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-2x=4,-y+7x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x+4
Me tāpiri 2x ki ngā taha e rua o te whārite.
-\left(2x+4\right)+7x=1
Whakakapia te 4+2x mō te y ki tērā atu whārite, -y+7x=1.
-2x-4+7x=1
Whakareatia -1 ki te 4+2x.
5x-4=1
Tāpiri -2x ki te 7x.
5x=5
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 5.
y=2+4
Whakaurua te 1 mō x ki y=2x+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=6
Tāpiri 4 ki te 2.
y=6,x=1
Kua oti te pūnaha te whakatau.
y-2x=4,-y+7x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\-1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-2\left(-1\right)\right)}&-\frac{-2}{7-\left(-2\left(-1\right)\right)}\\-\frac{-1}{7-\left(-2\left(-1\right)\right)}&\frac{1}{7-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\times 4+\frac{2}{5}\\\frac{1}{5}\times 4+\frac{1}{5}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=6,x=1
Tangohia ngā huānga poukapa y me x.
y-2x=4,-y+7x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-y-\left(-2x\right)=-4,-y+7x=1
Kia ōrite ai a y me -y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-y+2x=-4,-y+7x=1
Whakarūnātia.
-y+y+2x-7x=-4-1
Me tango -y+7x=1 mai i -y+2x=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-7x=-4-1
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5x=-4-1
Tāpiri 2x ki te -7x.
-5x=-5
Tāpiri -4 ki te -1.
x=1
Whakawehea ngā taha e rua ki te -5.
-y+7=1
Whakaurua te 1 mō x ki -y+7x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-y=-6
Me tango 7 mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua ki te -1.
y=6,x=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}