Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-2x=4,3y+2x=28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x+4
Me tāpiri 2x ki ngā taha e rua o te whārite.
3\left(2x+4\right)+2x=28
Whakakapia te 4+2x mō te y ki tērā atu whārite, 3y+2x=28.
6x+12+2x=28
Whakareatia 3 ki te 4+2x.
8x+12=28
Tāpiri 6x ki te 2x.
8x=16
Me tango 12 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 8.
y=2\times 2+4
Whakaurua te 2 mō x ki y=2x+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=4+4
Whakareatia 2 ki te 2.
y=8
Tāpiri 4 ki te 4.
y=8,x=2
Kua oti te pūnaha te whakatau.
y-2x=4,3y+2x=28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}1&-2\\3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\times 3\right)}&-\frac{-2}{2-\left(-2\times 3\right)}\\-\frac{3}{2-\left(-2\times 3\right)}&\frac{1}{2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}4\\28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}4\\28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 4+\frac{1}{4}\times 28\\-\frac{3}{8}\times 4+\frac{1}{8}\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=8,x=2
Tangohia ngā huānga poukapa y me x.
y-2x=4,3y+2x=28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y+3\left(-2\right)x=3\times 4,3y+2x=28
Kia ōrite ai a y me 3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3y-6x=12,3y+2x=28
Whakarūnātia.
3y-3y-6x-2x=12-28
Me tango 3y+2x=28 mai i 3y-6x=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6x-2x=12-28
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8x=12-28
Tāpiri -6x ki te -2x.
-8x=-16
Tāpiri 12 ki te -28.
x=2
Whakawehea ngā taha e rua ki te -8.
3y+2\times 2=28
Whakaurua te 2 mō x ki 3y+2x=28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y+4=28
Whakareatia 2 ki te 2.
3y=24
Me tango 4 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 3.
y=8,x=2
Kua oti te pūnaha te whakatau.