\left\{ \begin{array} { l } { y = x - 18 } \\ { y = 15 x } \end{array} \right.
Whakaoti mō y, x
x = -\frac{9}{7} = -1\frac{2}{7} \approx -1.285714286
y = -\frac{135}{7} = -19\frac{2}{7} \approx -19.285714286
Graph
Pātaitai
Simultaneous Equation
\left\{ \begin{array} { l } { y = x - 18 } \\ { y = 15 x } \end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
y-x=-18
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-15x=0
Whakaarohia te whārite tuarua. Tangohia te 15x mai i ngā taha e rua.
y-x=-18,y-15x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x-18
Me tāpiri x ki ngā taha e rua o te whārite.
x-18-15x=0
Whakakapia te x-18 mō te y ki tērā atu whārite, y-15x=0.
-14x-18=0
Tāpiri x ki te -15x.
-14x=18
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=-\frac{9}{7}
Whakawehea ngā taha e rua ki te -14.
y=-\frac{9}{7}-18
Whakaurua te -\frac{9}{7} mō x ki y=x-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-\frac{135}{7}
Tāpiri -18 ki te -\frac{9}{7}.
y=-\frac{135}{7},x=-\frac{9}{7}
Kua oti te pūnaha te whakatau.
y-x=-18
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-15x=0
Whakaarohia te whārite tuarua. Tangohia te 15x mai i ngā taha e rua.
y-x=-18,y-15x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\1&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-15\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{-15-\left(-1\right)}&-\frac{-1}{-15-\left(-1\right)}\\-\frac{1}{-15-\left(-1\right)}&\frac{1}{-15-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{15}{14}&-\frac{1}{14}\\\frac{1}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{15}{14}\left(-18\right)\\\frac{1}{14}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{135}{7}\\-\frac{9}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{135}{7},x=-\frac{9}{7}
Tangohia ngā huānga poukapa y me x.
y-x=-18
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-15x=0
Whakaarohia te whārite tuarua. Tangohia te 15x mai i ngā taha e rua.
y-x=-18,y-15x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-x+15x=-18
Me tango y-15x=0 mai i y-x=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x+15x=-18
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14x=-18
Tāpiri -x ki te 15x.
x=-\frac{9}{7}
Whakawehea ngā taha e rua ki te 14.
y-15\left(-\frac{9}{7}\right)=0
Whakaurua te -\frac{9}{7} mō x ki y-15x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+\frac{135}{7}=0
Whakareatia -15 ki te -\frac{9}{7}.
y=-\frac{135}{7}
Me tango \frac{135}{7} mai i ngā taha e rua o te whārite.
y=-\frac{135}{7},x=-\frac{9}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}