\left\{ \begin{array} { l } { y = m x + 6 } \\ { y = a + 2 x } \end{array} \right.
Whakaoti mō x, y
\left\{\begin{matrix}x=-\frac{6-a}{m-2}\text{, }y=-\frac{12-am}{m-2}\text{, }&m\neq 2\\x=\frac{y-6}{2}\text{, }y\in \mathrm{R}\text{, }&a=6\text{ and }m=2\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-mx=6
Whakaarohia te whārite tuatahi. Tangohia te mx mai i ngā taha e rua.
y-2x=a
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y+\left(-m\right)x=6,y-2x=a
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\left(-m\right)x=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=mx+6
Me tāpiri mx ki ngā taha e rua o te whārite.
mx+6-2x=a
Whakakapia te mx+6 mō te y ki tērā atu whārite, y-2x=a.
\left(m-2\right)x+6=a
Tāpiri mx ki te -2x.
\left(m-2\right)x=a-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=\frac{a-6}{m-2}
Whakawehea ngā taha e rua ki te m-2.
y=m\times \frac{a-6}{m-2}+6
Whakaurua te \frac{a-6}{m-2} mō x ki y=mx+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{m\left(a-6\right)}{m-2}+6
Whakareatia m ki te \frac{a-6}{m-2}.
y=\frac{am-12}{m-2}
Tāpiri 6 ki te \frac{m\left(a-6\right)}{m-2}.
y=\frac{am-12}{m-2},x=\frac{a-6}{m-2}
Kua oti te pūnaha te whakatau.
y-mx=6
Whakaarohia te whārite tuatahi. Tangohia te mx mai i ngā taha e rua.
y-2x=a
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y+\left(-m\right)x=6,y-2x=a
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\a\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right))\left(\begin{matrix}6\\a\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-m\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right))\left(\begin{matrix}6\\a\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-m\\1&-2\end{matrix}\right))\left(\begin{matrix}6\\a\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-m\right)}&-\frac{-m}{-2-\left(-m\right)}\\-\frac{1}{-2-\left(-m\right)}&\frac{1}{-2-\left(-m\right)}\end{matrix}\right)\left(\begin{matrix}6\\a\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{m-2}&\frac{m}{m-2}\\-\frac{1}{m-2}&\frac{1}{m-2}\end{matrix}\right)\left(\begin{matrix}6\\a\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{2}{m-2}\right)\times 6+\frac{m}{m-2}a\\\left(-\frac{1}{m-2}\right)\times 6+\frac{1}{m-2}a\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{am-12}{m-2}\\\frac{a-6}{m-2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{am-12}{m-2},x=\frac{a-6}{m-2}
Tangohia ngā huānga poukapa y me x.
y-mx=6
Whakaarohia te whārite tuatahi. Tangohia te mx mai i ngā taha e rua.
y-2x=a
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y+\left(-m\right)x=6,y-2x=a
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\left(-m\right)x+2x=6-a
Me tango y-2x=a mai i y+\left(-m\right)x=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\left(-m\right)x+2x=6-a
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(2-m\right)x=6-a
Tāpiri -mx ki te 2x.
x=\frac{6-a}{2-m}
Whakawehea ngā taha e rua ki te -m+2.
y-2\times \frac{6-a}{2-m}=a
Whakaurua te \frac{6-a}{-m+2} mō x ki y-2x=a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-\frac{2\left(6-a\right)}{2-m}=a
Whakareatia -2 ki te \frac{6-a}{-m+2}.
y=\frac{12-am}{2-m}
Me tāpiri \frac{2\left(6-a\right)}{-m+2} ki ngā taha e rua o te whārite.
y=\frac{12-am}{2-m},x=\frac{6-a}{2-m}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}