Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-kx=b
Whakaarohia te whārite tuatahi. Tangohia te kx mai i ngā taha e rua.
x^{2}+4y^{2}=4
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 4.
y+\left(-k\right)x=b,x^{2}+4y^{2}=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\left(-k\right)x=b
Whakaotia te y+\left(-k\right)x=b mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=kx+b
Me tango \left(-k\right)x mai i ngā taha e rua o te whārite.
x^{2}+4\left(kx+b\right)^{2}=4
Whakakapia te kx+b mō te y ki tērā atu whārite, x^{2}+4y^{2}=4.
x^{2}+4\left(k^{2}x^{2}+2bkx+b^{2}\right)=4
Pūrua kx+b.
x^{2}+4k^{2}x^{2}+8bkx+4b^{2}=4
Whakareatia 4 ki te k^{2}x^{2}+2bkx+b^{2}.
\left(4k^{2}+1\right)x^{2}+8bkx+4b^{2}=4
Tāpiri x^{2} ki te 4k^{2}x^{2}.
\left(4k^{2}+1\right)x^{2}+8bkx+4b^{2}-4=0
Me tango 4 mai i ngā taha e rua o te whārite.
x=\frac{-8bk±\sqrt{\left(8bk\right)^{2}-4\left(4k^{2}+1\right)\left(4b^{2}-4\right)}}{2\left(4k^{2}+1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+4k^{2} mō a, 4\times 2kb mō b, me -4+4b^{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8bk±\sqrt{64b^{2}k^{2}-4\left(4k^{2}+1\right)\left(4b^{2}-4\right)}}{2\left(4k^{2}+1\right)}
Pūrua 4\times 2kb.
x=\frac{-8bk±\sqrt{64b^{2}k^{2}+\left(-16k^{2}-4\right)\left(4b^{2}-4\right)}}{2\left(4k^{2}+1\right)}
Whakareatia -4 ki te 1+4k^{2}.
x=\frac{-8bk±\sqrt{64b^{2}k^{2}-16\left(b^{2}-1\right)\left(4k^{2}+1\right)}}{2\left(4k^{2}+1\right)}
Whakareatia -4-16k^{2} ki te -4+4b^{2}.
x=\frac{-8bk±\sqrt{16+64k^{2}-16b^{2}}}{2\left(4k^{2}+1\right)}
Tāpiri 64k^{2}b^{2} ki te -16\left(1+4k^{2}\right)\left(b^{2}-1\right).
x=\frac{-8bk±4\sqrt{1+4k^{2}-b^{2}}}{2\left(4k^{2}+1\right)}
Tuhia te pūtakerua o te -16b^{2}+64k^{2}+16.
x=\frac{-8bk±4\sqrt{1+4k^{2}-b^{2}}}{8k^{2}+2}
Whakareatia 2 ki te 1+4k^{2}.
x=\frac{-8bk+4\sqrt{1+4k^{2}-b^{2}}}{8k^{2}+2}
Nā, me whakaoti te whārite x=\frac{-8bk±4\sqrt{1+4k^{2}-b^{2}}}{8k^{2}+2} ina he tāpiri te ±. Tāpiri -8kb ki te 4\sqrt{-b^{2}+4k^{2}+1}.
x=\frac{2\left(-2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}
Whakawehe -8bk+4\sqrt{-b^{2}+4k^{2}+1} ki te 2+8k^{2}.
x=\frac{-8bk-4\sqrt{1+4k^{2}-b^{2}}}{8k^{2}+2}
Nā, me whakaoti te whārite x=\frac{-8bk±4\sqrt{1+4k^{2}-b^{2}}}{8k^{2}+2} ina he tango te ±. Tango 4\sqrt{-b^{2}+4k^{2}+1} mai i -8kb.
x=-\frac{2\left(2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}
Whakawehe -8kb-4\sqrt{-b^{2}+4k^{2}+1} ki te 2+8k^{2}.
y=k\times \frac{2\left(-2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}+b
E rua ngā otinga mō x: \frac{2\left(-2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}} me -\frac{2\left(2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}}. Me whakakapi \frac{2\left(-2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}} mō x ki te whārite y=kx+b hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=\frac{2\left(-2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}k+b
Whakareatia k ki te \frac{2\left(-2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}}.
y=k\left(-\frac{2\left(2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}\right)+b
Me whakakapi te -\frac{2\left(2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}} ināianei mō te x ki te whārite y=kx+b ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=\left(-\frac{2\left(2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}\right)k+b
Whakareatia k ki te -\frac{2\left(2bk+\sqrt{-b^{2}+4k^{2}+1}\right)}{1+4k^{2}}.
y=\frac{2\left(-2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}k+b,x=\frac{2\left(-2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}\text{ or }y=\left(-\frac{2\left(2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}\right)k+b,x=-\frac{2\left(2bk+\sqrt{1+4k^{2}-b^{2}}\right)}{4k^{2}+1}
Kua oti te pūnaha te whakatau.