Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=9,2y+3x=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x+9
Me tango 2x mai i ngā taha e rua o te whārite.
2\left(-2x+9\right)+3x=16
Whakakapia te -2x+9 mō te y ki tērā atu whārite, 2y+3x=16.
-4x+18+3x=16
Whakareatia 2 ki te -2x+9.
-x+18=16
Tāpiri -4x ki te 3x.
-x=-2
Me tango 18 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -1.
y=-2\times 2+9
Whakaurua te 2 mō x ki y=-2x+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-4+9
Whakareatia -2 ki te 2.
y=5
Tāpiri 9 ki te -4.
y=5,x=2
Kua oti te pūnaha te whakatau.
y+2x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=9,2y+3x=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\times 9+2\times 16\\2\times 9-16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=5,x=2
Tangohia ngā huānga poukapa y me x.
y+2x=9
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=9,2y+3x=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\times 2x=2\times 9,2y+3x=16
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y+4x=18,2y+3x=16
Whakarūnātia.
2y-2y+4x-3x=18-16
Me tango 2y+3x=16 mai i 2y+4x=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-3x=18-16
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=18-16
Tāpiri 4x ki te -3x.
x=2
Tāpiri 18 ki te -16.
2y+3\times 2=16
Whakaurua te 2 mō x ki 2y+3x=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y+6=16
Whakareatia 3 ki te 2.
2y=10
Me tango 6 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 2.
y=5,x=2
Kua oti te pūnaha te whakatau.