\left\{ \begin{array} { l } { y = 4 x + 5 } \\ { 4 x - 3 y = 3 } \end{array} \right.
Whakaoti mō y, x
x = -\frac{9}{4} = -2\frac{1}{4} = -2.25
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-4x=5
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y-4x=5,-3y+4x=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-4x=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=4x+5
Me tāpiri 4x ki ngā taha e rua o te whārite.
-3\left(4x+5\right)+4x=3
Whakakapia te 4x+5 mō te y ki tērā atu whārite, -3y+4x=3.
-12x-15+4x=3
Whakareatia -3 ki te 4x+5.
-8x-15=3
Tāpiri -12x ki te 4x.
-8x=18
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=-\frac{9}{4}
Whakawehea ngā taha e rua ki te -8.
y=4\left(-\frac{9}{4}\right)+5
Whakaurua te -\frac{9}{4} mō x ki y=4x+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-9+5
Whakareatia 4 ki te -\frac{9}{4}.
y=-4
Tāpiri 5 ki te -9.
y=-4,x=-\frac{9}{4}
Kua oti te pūnaha te whakatau.
y-4x=5
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y-4x=5,-3y+4x=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right))\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-3&4\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-4\left(-3\right)\right)}&-\frac{-4}{4-\left(-4\left(-3\right)\right)}\\-\frac{-3}{4-\left(-4\left(-3\right)\right)}&\frac{1}{4-\left(-4\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5-\frac{1}{2}\times 3\\-\frac{3}{8}\times 5-\frac{1}{8}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-\frac{9}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-4,x=-\frac{9}{4}
Tangohia ngā huānga poukapa y me x.
y-4x=5
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y-4x=5,-3y+4x=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3y-3\left(-4\right)x=-3\times 5,-3y+4x=3
Kia ōrite ai a y me -3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3y+12x=-15,-3y+4x=3
Whakarūnātia.
-3y+3y+12x-4x=-15-3
Me tango -3y+4x=3 mai i -3y+12x=-15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12x-4x=-15-3
Tāpiri -3y ki te 3y. Ka whakakore atu ngā kupu -3y me 3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8x=-15-3
Tāpiri 12x ki te -4x.
8x=-18
Tāpiri -15 ki te -3.
x=-\frac{9}{4}
Whakawehea ngā taha e rua ki te 8.
-3y+4\left(-\frac{9}{4}\right)=3
Whakaurua te -\frac{9}{4} mō x ki -3y+4x=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-3y-9=3
Whakareatia 4 ki te -\frac{9}{4}.
-3y=12
Me tāpiri 9 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te -3.
y=-4,x=-\frac{9}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}