Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-3x=-5
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-3x=-5,y-2x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x-5
Me tāpiri 3x ki ngā taha e rua o te whārite.
3x-5-2x=0
Whakakapia te 3x-5 mō te y ki tērā atu whārite, y-2x=0.
x-5=0
Tāpiri 3x ki te -2x.
x=5
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=3\times 5-5
Whakaurua te 5 mō x ki y=3x-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=15-5
Whakareatia 3 ki te 5.
y=10
Tāpiri -5 ki te 15.
y=10,x=5
Kua oti te pūnaha te whakatau.
y-3x=-5
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-3x=-5,y-2x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-5\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-5\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-2\end{matrix}\right))\left(\begin{matrix}-5\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-3\right)}&-\frac{-3}{-2-\left(-3\right)}\\-\frac{1}{-2-\left(-3\right)}&\frac{1}{-2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}-5\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\left(-5\right)\\-\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
y=10,x=5
Tangohia ngā huānga poukapa y me x.
y-3x=-5
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-3x=-5,y-2x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-3x+2x=-5
Me tango y-2x=0 mai i y-3x=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3x+2x=-5
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=-5
Tāpiri -3x ki te 2x.
x=5
Whakawehea ngā taha e rua ki te -1.
y-2\times 5=0
Whakaurua te 5 mō x ki y-2x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-10=0
Whakareatia -2 ki te 5.
y=10
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=10,x=5
Kua oti te pūnaha te whakatau.