\left\{ \begin{array} { l } { y = 3 x - 2 } \\ { 5 x + 4 y = 9 } \end{array} \right.
Whakaoti mō y, x
x=1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-3x=-2
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=-2,4y+5x=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x-2
Me tāpiri 3x ki ngā taha e rua o te whārite.
4\left(3x-2\right)+5x=9
Whakakapia te 3x-2 mō te y ki tērā atu whārite, 4y+5x=9.
12x-8+5x=9
Whakareatia 4 ki te 3x-2.
17x-8=9
Tāpiri 12x ki te 5x.
17x=17
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 17.
y=3-2
Whakaurua te 1 mō x ki y=3x-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1
Tāpiri -2 ki te 3.
y=1,x=1
Kua oti te pūnaha te whakatau.
y-3x=-2
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=-2,4y+5x=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}1&-3\\4&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-3\times 4\right)}&-\frac{-3}{5-\left(-3\times 4\right)}\\-\frac{4}{5-\left(-3\times 4\right)}&\frac{1}{5-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{3}{17}\\-\frac{4}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-2\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\left(-2\right)+\frac{3}{17}\times 9\\-\frac{4}{17}\left(-2\right)+\frac{1}{17}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,x=1
Tangohia ngā huānga poukapa y me x.
y-3x=-2
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=-2,4y+5x=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4y+4\left(-3\right)x=4\left(-2\right),4y+5x=9
Kia ōrite ai a y me 4y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4y-12x=-8,4y+5x=9
Whakarūnātia.
4y-4y-12x-5x=-8-9
Me tango 4y+5x=9 mai i 4y-12x=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12x-5x=-8-9
Tāpiri 4y ki te -4y. Ka whakakore atu ngā kupu 4y me -4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17x=-8-9
Tāpiri -12x ki te -5x.
-17x=-17
Tāpiri -8 ki te -9.
x=1
Whakawehea ngā taha e rua ki te -17.
4y+5=9
Whakaurua te 1 mō x ki 4y+5x=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
4y=4
Me tango 5 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 4.
y=1,x=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}