\left\{ \begin{array} { l } { y = 3 x } \\ { x ^ { 2 } + y ^ { 2 } = 9 } \end{array} \right.
Whakaoti mō y, x
x=-\frac{3\sqrt{10}}{10}\approx -0.948683298\text{, }y=-\frac{9\sqrt{10}}{10}\approx -2.846049894
x=\frac{3\sqrt{10}}{10}\approx 0.948683298\text{, }y=\frac{9\sqrt{10}}{10}\approx 2.846049894
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=0,x^{2}+y^{2}=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=0
Whakaotia te y-3x=0 mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x
Me tango -3x mai i ngā taha e rua o te whārite.
x^{2}+\left(3x\right)^{2}=9
Whakakapia te 3x mō te y ki tērā atu whārite, x^{2}+y^{2}=9.
x^{2}+9x^{2}=9
Pūrua 3x.
10x^{2}=9
Tāpiri x^{2} ki te 9x^{2}.
10x^{2}-9=0
Me tango 9 mai i ngā taha e rua o te whārite.
x=\frac{0±\sqrt{0^{2}-4\times 10\left(-9\right)}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 3^{2} mō a, 1\times 0\times 2\times 3 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 10\left(-9\right)}}{2\times 10}
Pūrua 1\times 0\times 2\times 3.
x=\frac{0±\sqrt{-40\left(-9\right)}}{2\times 10}
Whakareatia -4 ki te 1+1\times 3^{2}.
x=\frac{0±\sqrt{360}}{2\times 10}
Whakareatia -40 ki te -9.
x=\frac{0±6\sqrt{10}}{2\times 10}
Tuhia te pūtakerua o te 360.
x=\frac{0±6\sqrt{10}}{20}
Whakareatia 2 ki te 1+1\times 3^{2}.
x=\frac{3\sqrt{10}}{10}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{10}}{20} ina he tāpiri te ±.
x=-\frac{3\sqrt{10}}{10}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{10}}{20} ina he tango te ±.
y=3\times \frac{3\sqrt{10}}{10}
E rua ngā otinga mō x: \frac{3\sqrt{10}}{10} me -\frac{3\sqrt{10}}{10}. Me whakakapi \frac{3\sqrt{10}}{10} mō x ki te whārite y=3x hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=3\left(-\frac{3\sqrt{10}}{10}\right)
Me whakakapi te -\frac{3\sqrt{10}}{10} ināianei mō te x ki te whārite y=3x ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=3\times \frac{3\sqrt{10}}{10},x=\frac{3\sqrt{10}}{10}\text{ or }y=3\left(-\frac{3\sqrt{10}}{10}\right),x=-\frac{3\sqrt{10}}{10}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}