Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=0,y+x=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x
Me tāpiri 3x ki ngā taha e rua o te whārite.
3x+x=16
Whakakapia te 3x mō te y ki tērā atu whārite, y+x=16.
4x=16
Tāpiri 3x ki te x.
x=4
Whakawehea ngā taha e rua ki te 4.
y=3\times 4
Whakaurua te 4 mō x ki y=3x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=12
Whakareatia 3 ki te 4.
y=12,x=4
Kua oti te pūnaha te whakatau.
y-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=0,y+x=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-3}{1-\left(-3\right)}\\-\frac{1}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 16\\\frac{1}{4}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}12\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=12,x=4
Tangohia ngā huānga poukapa y me x.
y-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=0,y+x=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-3x-x=-16
Me tango y+x=16 mai i y-3x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3x-x=-16
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=-16
Tāpiri -3x ki te -x.
x=4
Whakawehea ngā taha e rua ki te -4.
y+4=16
Whakaurua te 4 mō x ki y+x=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=12
Me tango 4 mai i ngā taha e rua o te whārite.
y=12,x=4
Kua oti te pūnaha te whakatau.