Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+4x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
y+4x=-3,y+2x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+4x=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-4x-3
Me tango 4x mai i ngā taha e rua o te whārite.
-4x-3+2x=1
Whakakapia te -4x-3 mō te y ki tērā atu whārite, y+2x=1.
-2x-3=1
Tāpiri -4x ki te 2x.
-2x=4
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -2.
y=-4\left(-2\right)-3
Whakaurua te -2 mō x ki y=-4x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=8-3
Whakareatia -4 ki te -2.
y=5
Tāpiri -3 ki te 8.
y=5,x=-2
Kua oti te pūnaha te whakatau.
y+4x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
y+4x=-3,y+2x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}1&4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1&2\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)+2\\\frac{1}{2}\left(-3\right)-\frac{1}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
y=5,x=-2
Tangohia ngā huānga poukapa y me x.
y+4x=-3
Whakaarohia te whārite tuatahi. Me tāpiri te 4x ki ngā taha e rua.
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
y+4x=-3,y+2x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+4x-2x=-3-1
Me tango y+2x=1 mai i y+4x=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-2x=-3-1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=-3-1
Tāpiri 4x ki te -2x.
2x=-4
Tāpiri -3 ki te -1.
x=-2
Whakawehea ngā taha e rua ki te 2.
y+2\left(-2\right)=1
Whakaurua te -2 mō x ki y+2x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-4=1
Whakareatia 2 ki te -2.
y=5
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=5,x=-2
Kua oti te pūnaha te whakatau.