Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y=-\frac{2}{3}x-5
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5\left(-\frac{2}{3}x-5\right)+8x=-45
Whakakapia te -\frac{2x}{3}-5 mō te y ki tērā atu whārite, 5y+8x=-45.
-\frac{10}{3}x-25+8x=-45
Whakareatia 5 ki te -\frac{2x}{3}-5.
\frac{14}{3}x-25=-45
Tāpiri -\frac{10x}{3} ki te 8x.
\frac{14}{3}x=-20
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=-\frac{30}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{2}{3}\left(-\frac{30}{7}\right)-5
Whakaurua te -\frac{30}{7} mō x ki y=-\frac{2}{3}x-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{20}{7}-5
Whakareatia -\frac{2}{3} ki te -\frac{30}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{15}{7}
Tāpiri -5 ki te \frac{20}{7}.
y=-\frac{15}{7},x=-\frac{30}{7}
Kua oti te pūnaha te whakatau.
y=-\frac{2}{3}x-5
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y+\frac{2}{3}x=-5
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
y+\frac{2}{3}x=-5,5y+8x=-45
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-45\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\frac{2}{3}\times 5}&-\frac{\frac{2}{3}}{8-\frac{2}{3}\times 5}\\-\frac{5}{8-\frac{2}{3}\times 5}&\frac{1}{8-\frac{2}{3}\times 5}\end{matrix}\right)\left(\begin{matrix}-5\\-45\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}&-\frac{1}{7}\\-\frac{15}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-5\\-45\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\left(-5\right)-\frac{1}{7}\left(-45\right)\\-\frac{15}{14}\left(-5\right)+\frac{3}{14}\left(-45\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{7}\\-\frac{30}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{15}{7},x=-\frac{30}{7}
Tangohia ngā huānga poukapa y me x.
y=-\frac{2}{3}x-5
Whakaarohia te whārite tuatahi. Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y+\frac{2}{3}x=-5
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
y+\frac{2}{3}x=-5,5y+8x=-45
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y+5\times \frac{2}{3}x=5\left(-5\right),5y+8x=-45
Kia ōrite ai a y me 5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5y+\frac{10}{3}x=-25,5y+8x=-45
Whakarūnātia.
5y-5y+\frac{10}{3}x-8x=-25+45
Me tango 5y+8x=-45 mai i 5y+\frac{10}{3}x=-25 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{10}{3}x-8x=-25+45
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{14}{3}x=-25+45
Tāpiri \frac{10x}{3} ki te -8x.
-\frac{14}{3}x=20
Tāpiri -25 ki te 45.
x=-\frac{30}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
5y+8\left(-\frac{30}{7}\right)=-45
Whakaurua te -\frac{30}{7} mō x ki 5y+8x=-45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y-\frac{240}{7}=-45
Whakareatia 8 ki te -\frac{30}{7}.
5y=-\frac{75}{7}
Me tāpiri \frac{240}{7} ki ngā taha e rua o te whārite.
y=-\frac{15}{7}
Whakawehea ngā taha e rua ki te 5.
y=-\frac{15}{7},x=-\frac{30}{7}
Kua oti te pūnaha te whakatau.