\left\{ \begin{array} { l } { y = - \frac { 3 } { 4 } x + \frac { 3 } { 4 } } \\ { y = \frac { 4 } { 3 } x + \frac { 11 } { 3 } } \end{array} \right.
Whakaoti mō y, x
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
y = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+\frac{3}{4}x=\frac{3}{4}
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{4}x ki ngā taha e rua.
y-\frac{4}{3}x=\frac{11}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\frac{3}{4}x=\frac{3}{4}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-\frac{3}{4}x+\frac{3}{4}
Me tango \frac{3x}{4} mai i ngā taha e rua o te whārite.
-\frac{3}{4}x+\frac{3}{4}-\frac{4}{3}x=\frac{11}{3}
Whakakapia te \frac{-3x+3}{4} mō te y ki tērā atu whārite, y-\frac{4}{3}x=\frac{11}{3}.
-\frac{25}{12}x+\frac{3}{4}=\frac{11}{3}
Tāpiri -\frac{3x}{4} ki te -\frac{4x}{3}.
-\frac{25}{12}x=\frac{35}{12}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
x=-\frac{7}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{25}{12}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{3}{4}\left(-\frac{7}{5}\right)+\frac{3}{4}
Whakaurua te -\frac{7}{5} mō x ki y=-\frac{3}{4}x+\frac{3}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{21}{20}+\frac{3}{4}
Whakareatia -\frac{3}{4} ki te -\frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{9}{5}
Tāpiri \frac{3}{4} ki te \frac{21}{20} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{9}{5},x=-\frac{7}{5}
Kua oti te pūnaha te whakatau.
y+\frac{3}{4}x=\frac{3}{4}
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{4}x ki ngā taha e rua.
y-\frac{4}{3}x=\frac{11}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{4}{3}}{-\frac{4}{3}-\frac{3}{4}}&-\frac{\frac{3}{4}}{-\frac{4}{3}-\frac{3}{4}}\\-\frac{1}{-\frac{4}{3}-\frac{3}{4}}&\frac{1}{-\frac{4}{3}-\frac{3}{4}}\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{16}{25}&\frac{9}{25}\\\frac{12}{25}&-\frac{12}{25}\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{16}{25}\times \frac{3}{4}+\frac{9}{25}\times \frac{11}{3}\\\frac{12}{25}\times \frac{3}{4}-\frac{12}{25}\times \frac{11}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\-\frac{7}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{9}{5},x=-\frac{7}{5}
Tangohia ngā huānga poukapa y me x.
y+\frac{3}{4}x=\frac{3}{4}
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{4}x ki ngā taha e rua.
y-\frac{4}{3}x=\frac{11}{3}
Whakaarohia te whārite tuarua. Tangohia te \frac{4}{3}x mai i ngā taha e rua.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\frac{3}{4}x+\frac{4}{3}x=\frac{3}{4}-\frac{11}{3}
Me tango y-\frac{4}{3}x=\frac{11}{3} mai i y+\frac{3}{4}x=\frac{3}{4} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{4}x+\frac{4}{3}x=\frac{3}{4}-\frac{11}{3}
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{25}{12}x=\frac{3}{4}-\frac{11}{3}
Tāpiri \frac{3x}{4} ki te \frac{4x}{3}.
\frac{25}{12}x=-\frac{35}{12}
Tāpiri \frac{3}{4} ki te -\frac{11}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{7}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{12}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y-\frac{4}{3}\left(-\frac{7}{5}\right)=\frac{11}{3}
Whakaurua te -\frac{7}{5} mō x ki y-\frac{4}{3}x=\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+\frac{28}{15}=\frac{11}{3}
Whakareatia -\frac{4}{3} ki te -\frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{9}{5}
Me tango \frac{28}{15} mai i ngā taha e rua o te whārite.
y=\frac{9}{5},x=-\frac{7}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}