Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+\frac{3}{2}x=3
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
y-\frac{3}{2}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{2}x mai i ngā taha e rua.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+\frac{3}{2}x=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-\frac{3}{2}x+3
Me tango \frac{3x}{2} mai i ngā taha e rua o te whārite.
-\frac{3}{2}x+3-\frac{3}{2}x=0
Whakakapia te -\frac{3x}{2}+3 mō te y ki tērā atu whārite, y-\frac{3}{2}x=0.
-3x+3=0
Tāpiri -\frac{3x}{2} ki te -\frac{3x}{2}.
-3x=-3
Me tango 3 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
y=-\frac{3}{2}+3
Whakaurua te 1 mō x ki y=-\frac{3}{2}x+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{3}{2}
Tāpiri 3 ki te -\frac{3}{2}.
y=\frac{3}{2},x=1
Kua oti te pūnaha te whakatau.
y+\frac{3}{2}x=3
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
y-\frac{3}{2}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{2}x mai i ngā taha e rua.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}&-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}\\-\frac{1}{-\frac{3}{2}-\frac{3}{2}}&\frac{1}{-\frac{3}{2}-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3\\\frac{1}{3}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{3}{2},x=1
Tangohia ngā huānga poukapa y me x.
y+\frac{3}{2}x=3
Whakaarohia te whārite tuatahi. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
y-\frac{3}{2}x=0
Whakaarohia te whārite tuarua. Tangohia te \frac{3}{2}x mai i ngā taha e rua.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+\frac{3}{2}x+\frac{3}{2}x=3
Me tango y-\frac{3}{2}x=0 mai i y+\frac{3}{2}x=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{2}x+\frac{3}{2}x=3
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=3
Tāpiri \frac{3x}{2} ki te \frac{3x}{2}.
x=1
Whakawehea ngā taha e rua ki te 3.
y-\frac{3}{2}=0
Whakaurua te 1 mō x ki y-\frac{3}{2}x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
y=\frac{3}{2},x=1
Kua oti te pūnaha te whakatau.