\left\{ \begin{array} { l } { y = \frac { - 4 } { 5 } x - 9 } \\ { y = - \frac { 8 x } { 3 } - 15 } \end{array} \right.
Whakaoti mō y, x
x = -\frac{45}{14} = -3\frac{3}{14} \approx -3.214285714
y = -\frac{45}{7} = -6\frac{3}{7} \approx -6.428571429
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=-\frac{4}{5}x-9
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
3\left(-\frac{4}{5}x-9\right)+8x=-45
Whakakapia te -\frac{4x}{5}-9 mō te y ki tērā atu whārite, 3y+8x=-45.
-\frac{12}{5}x-27+8x=-45
Whakareatia 3 ki te -\frac{4x}{5}-9.
\frac{28}{5}x-27=-45
Tāpiri -\frac{12x}{5} ki te 8x.
\frac{28}{5}x=-18
Me tāpiri 27 ki ngā taha e rua o te whārite.
x=-\frac{45}{14}
Whakawehea ngā taha e rua o te whārite ki te \frac{28}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{4}{5}\left(-\frac{45}{14}\right)-9
Whakaurua te -\frac{45}{14} mō x ki y=-\frac{4}{5}x-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{18}{7}-9
Whakareatia -\frac{4}{5} ki te -\frac{45}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-\frac{45}{7}
Tāpiri -9 ki te \frac{18}{7}.
y=-\frac{45}{7},x=-\frac{45}{14}
Kua oti te pūnaha te whakatau.
y=-\frac{4}{5}x-9
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
y+\frac{4}{5}x=-9
Me tāpiri te \frac{4}{5}x ki ngā taha e rua.
y+\frac{8x}{3}=-15
Whakaarohia te whārite tuarua. Me tāpiri te \frac{8x}{3} ki ngā taha e rua.
3y+8x=-45
Whakareatia ngā taha e rua o te whārite ki te 3.
y+\frac{4}{5}x=-9,3y+8x=-45
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-45\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{4}{5}\\3&8\end{matrix}\right))\left(\begin{matrix}-9\\-45\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\frac{4}{5}\times 3}&-\frac{\frac{4}{5}}{8-\frac{4}{5}\times 3}\\-\frac{3}{8-\frac{4}{5}\times 3}&\frac{1}{8-\frac{4}{5}\times 3}\end{matrix}\right)\left(\begin{matrix}-9\\-45\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}&-\frac{1}{7}\\-\frac{15}{28}&\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}-9\\-45\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}\left(-9\right)-\frac{1}{7}\left(-45\right)\\-\frac{15}{28}\left(-9\right)+\frac{5}{28}\left(-45\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{45}{7}\\-\frac{45}{14}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{45}{7},x=-\frac{45}{14}
Tangohia ngā huānga poukapa y me x.
y=-\frac{4}{5}x-9
Whakaarohia te whārite tuatahi. Ka taea te hautanga \frac{-4}{5} te tuhi anō ko -\frac{4}{5} mā te tango i te tohu tōraro.
y+\frac{4}{5}x=-9
Me tāpiri te \frac{4}{5}x ki ngā taha e rua.
y+\frac{8x}{3}=-15
Whakaarohia te whārite tuarua. Me tāpiri te \frac{8x}{3} ki ngā taha e rua.
3y+8x=-45
Whakareatia ngā taha e rua o te whārite ki te 3.
y+\frac{4}{5}x=-9,3y+8x=-45
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y+3\times \frac{4}{5}x=3\left(-9\right),3y+8x=-45
Kia ōrite ai a y me 3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3y+\frac{12}{5}x=-27,3y+8x=-45
Whakarūnātia.
3y-3y+\frac{12}{5}x-8x=-27+45
Me tango 3y+8x=-45 mai i 3y+\frac{12}{5}x=-27 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{12}{5}x-8x=-27+45
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{28}{5}x=-27+45
Tāpiri \frac{12x}{5} ki te -8x.
-\frac{28}{5}x=18
Tāpiri -27 ki te 45.
x=-\frac{45}{14}
Whakawehea ngā taha e rua o te whārite ki te -\frac{28}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3y+8\left(-\frac{45}{14}\right)=-45
Whakaurua te -\frac{45}{14} mō x ki 3y+8x=-45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y-\frac{180}{7}=-45
Whakareatia 8 ki te -\frac{45}{14}.
3y=-\frac{135}{7}
Me tāpiri \frac{180}{7} ki ngā taha e rua o te whārite.
y=-\frac{45}{7}
Whakawehea ngā taha e rua ki te 3.
y=-\frac{45}{7},x=-\frac{45}{14}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}