\left\{ \begin{array} { l } { x _ { 1 } + x _ { 2 } = 97 } \\ { \frac { x _ { 2 } } { x _ { 1 } } = 2 } \end{array} \right.
Whakaoti mō x_1, x_2
x_{1} = \frac{97}{3} = 32\frac{1}{3} \approx 32.333333333
x_{2} = \frac{194}{3} = 64\frac{2}{3} \approx 64.666666667
Tohaina
Kua tāruatia ki te papatopenga
x_{2}=2x_{1}
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x_{1} ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x_{1}.
x_{2}-2x_{1}=0
Tangohia te 2x_{1} mai i ngā taha e rua.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x_{1}+x_{2}=97
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x_{1} mā te wehe i te x_{1} i te taha mauī o te tohu ōrite.
x_{1}=-x_{2}+97
Me tango x_{2} mai i ngā taha e rua o te whārite.
-2\left(-x_{2}+97\right)+x_{2}=0
Whakakapia te -x_{2}+97 mō te x_{1} ki tērā atu whārite, -2x_{1}+x_{2}=0.
2x_{2}-194+x_{2}=0
Whakareatia -2 ki te -x_{2}+97.
3x_{2}-194=0
Tāpiri 2x_{2} ki te x_{2}.
3x_{2}=194
Me tāpiri 194 ki ngā taha e rua o te whārite.
x_{2}=\frac{194}{3}
Whakawehea ngā taha e rua ki te 3.
x_{1}=-\frac{194}{3}+97
Whakaurua te \frac{194}{3} mō x_{2} ki x_{1}=-x_{2}+97. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x_{1} hāngai tonu.
x_{1}=\frac{97}{3}
Tāpiri 97 ki te -\frac{194}{3}.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
Kua oti te pūnaha te whakatau.
x_{2}=2x_{1}
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x_{1} ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x_{1}.
x_{2}-2x_{1}=0
Tangohia te 2x_{1} mai i ngā taha e rua.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}97\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}97\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{1}{1-\left(-2\right)}\\-\frac{-2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}97\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}97\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 97\\\frac{2}{3}\times 97\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{97}{3}\\\frac{194}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
Tangohia ngā huānga poukapa x_{1} me x_{2}.
x_{2}=2x_{1}
Whakaarohia te whārite tuarua. Tē taea kia ōrite te tāupe x_{1} ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x_{1}.
x_{2}-2x_{1}=0
Tangohia te 2x_{1} mai i ngā taha e rua.
x_{1}+x_{2}=97,-2x_{1}+x_{2}=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x_{1}+2x_{1}+x_{2}-x_{2}=97
Me tango -2x_{1}+x_{2}=0 mai i x_{1}+x_{2}=97 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x_{1}+2x_{1}=97
Tāpiri x_{2} ki te -x_{2}. Ka whakakore atu ngā kupu x_{2} me -x_{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x_{1}=97
Tāpiri x_{1} ki te 2x_{1}.
x_{1}=\frac{97}{3}
Whakawehea ngā taha e rua ki te 3.
-2\times \frac{97}{3}+x_{2}=0
Whakaurua te \frac{97}{3} mō x_{1} ki -2x_{1}+x_{2}=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x_{2} hāngai tonu.
-\frac{194}{3}+x_{2}=0
Whakareatia -2 ki te \frac{97}{3}.
x_{2}=\frac{194}{3}
Me tāpiri \frac{194}{3} ki ngā taha e rua o te whārite.
x_{1}=\frac{97}{3},x_{2}=\frac{194}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}