\left\{ \begin{array} { l } { x - y = 5 } \\ { 5 x - 8 y = 19 } \end{array} \right.
Whakaoti mō x, y
x=7
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=5,5x-8y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
5\left(y+5\right)-8y=19
Whakakapia te y+5 mō te x ki tērā atu whārite, 5x-8y=19.
5y+25-8y=19
Whakareatia 5 ki te y+5.
-3y+25=19
Tāpiri 5y ki te -8y.
-3y=-6
Me tango 25 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -3.
x=2+5
Whakaurua te 2 mō y ki x=y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=7
Tāpiri 5 ki te 2.
x=7,y=2
Kua oti te pūnaha te whakatau.
x-y=5,5x-8y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right))\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right))\left(\begin{matrix}5\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right))\left(\begin{matrix}5\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\5&-8\end{matrix}\right))\left(\begin{matrix}5\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-5\right)}&-\frac{-1}{-8-\left(-5\right)}\\-\frac{5}{-8-\left(-5\right)}&\frac{1}{-8-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}5\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}&-\frac{1}{3}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\times 5-\frac{1}{3}\times 19\\\frac{5}{3}\times 5-\frac{1}{3}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=2
Tangohia ngā huānga poukapa x me y.
x-y=5,5x-8y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+5\left(-1\right)y=5\times 5,5x-8y=19
Kia ōrite ai a x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5x-5y=25,5x-8y=19
Whakarūnātia.
5x-5x-5y+8y=25-19
Me tango 5x-8y=19 mai i 5x-5y=25 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y+8y=25-19
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=25-19
Tāpiri -5y ki te 8y.
3y=6
Tāpiri 25 ki te -19.
y=2
Whakawehea ngā taha e rua ki te 3.
5x-8\times 2=19
Whakaurua te 2 mō y ki 5x-8y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-16=19
Whakareatia -8 ki te 2.
5x=35
Me tāpiri 16 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 5.
x=7,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}