Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=3,3x+y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
3\left(y+3\right)+y=8
Whakakapia te y+3 mō te x ki tērā atu whārite, 3x+y=8.
3y+9+y=8
Whakareatia 3 ki te y+3.
4y+9=8
Tāpiri 3y ki te y.
4y=-1
Me tango 9 mai i ngā taha e rua o te whārite.
y=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}+3
Whakaurua te -\frac{1}{4} mō y ki x=y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{11}{4}
Tāpiri 3 ki te -\frac{1}{4}.
x=\frac{11}{4},y=-\frac{1}{4}
Kua oti te pūnaha te whakatau.
x-y=3,3x+y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3+\frac{1}{4}\times 8\\-\frac{3}{4}\times 3+\frac{1}{4}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{1}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{11}{4},y=-\frac{1}{4}
Tangohia ngā huānga poukapa x me y.
x-y=3,3x+y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\left(-1\right)y=3\times 3,3x+y=8
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-3y=9,3x+y=8
Whakarūnātia.
3x-3x-3y-y=9-8
Me tango 3x+y=8 mai i 3x-3y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-y=9-8
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=9-8
Tāpiri -3y ki te -y.
-4y=1
Tāpiri 9 ki te -8.
y=-\frac{1}{4}
Whakawehea ngā taha e rua ki te -4.
3x-\frac{1}{4}=8
Whakaurua te -\frac{1}{4} mō y ki 3x+y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{33}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
x=\frac{11}{4}
Whakawehea ngā taha e rua ki te 3.
x=\frac{11}{4},y=-\frac{1}{4}
Kua oti te pūnaha te whakatau.