\left\{ \begin{array} { l } { x - y = 2 a } \\ { 2 x + 3 y = 5 - a } \end{array} \right.
Whakaoti mō x, y
x=a+1
y=1-a
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=2a,2x+3y=5-a
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=2a
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+2a
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y+2a\right)+3y=5-a
Whakakapia te y+2a mō te x ki tērā atu whārite, 2x+3y=5-a.
2y+4a+3y=5-a
Whakareatia 2 ki te y+2a.
5y+4a=5-a
Tāpiri 2y ki te 3y.
5y=5-5a
Me tango 4a mai i ngā taha e rua o te whārite.
y=1-a
Whakawehea ngā taha e rua ki te 5.
x=1-a+2a
Whakaurua te 1-a mō y ki x=y+2a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=a+1
Tāpiri 2a ki te 1-a.
x=a+1,y=1-a
Kua oti te pūnaha te whakatau.
x-y=2a,2x+3y=5-a
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2a+\frac{1}{5}\left(5-a\right)\\-\frac{2}{5}\times 2a+\frac{1}{5}\left(5-a\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+1\\1-a\end{matrix}\right)
Mahia ngā tātaitanga.
x=a+1,y=1-a
Tangohia ngā huānga poukapa x me y.
x-y=2a,2x+3y=5-a
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-1\right)y=2\times 2a,2x+3y=5-a
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-2y=4a,2x+3y=5-a
Whakarūnātia.
2x-2x-2y-3y=4a+a-5
Me tango 2x+3y=5-a mai i 2x-2y=4a mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-3y=4a+a-5
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=4a+a-5
Tāpiri -2y ki te -3y.
-5y=5a-5
Tāpiri 4a ki te -5+a.
y=1-a
Whakawehea ngā taha e rua ki te -5.
2x+3\left(1-a\right)=5-a
Whakaurua te 1-a mō y ki 2x+3y=5-a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+3-3a=5-a
Whakareatia 3 ki te 1-a.
2x=2a+2
Me tango 3-3a mai i ngā taha e rua o te whārite.
x=a+1
Whakawehea ngā taha e rua ki te 2.
x=a+1,y=1-a
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}