\left\{ \begin{array} { l } { x - y = 2 } \\ { 2 x = 3 ( y - 1 ) } \end{array} \right.
Whakaoti mō x, y
x=9
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x=3y-3
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
2x-3y=-3
Tangohia te 3y mai i ngā taha e rua.
x-y=2,2x-3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+2
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y+2\right)-3y=-3
Whakakapia te y+2 mō te x ki tērā atu whārite, 2x-3y=-3.
2y+4-3y=-3
Whakareatia 2 ki te y+2.
-y+4=-3
Tāpiri 2y ki te -3y.
-y=-7
Me tango 4 mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua ki te -1.
x=7+2
Whakaurua te 7 mō y ki x=y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9
Tāpiri 2 ki te 7.
x=9,y=7
Kua oti te pūnaha te whakatau.
2x=3y-3
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
2x-3y=-3
Tangohia te 3y mai i ngā taha e rua.
x-y=2,2x-3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-3\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-2\right)}&-\frac{-1}{-3-\left(-2\right)}\\-\frac{2}{-3-\left(-2\right)}&\frac{1}{-3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 2-\left(-3\right)\\2\times 2-\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=7
Tangohia ngā huānga poukapa x me y.
2x=3y-3
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-1.
2x-3y=-3
Tangohia te 3y mai i ngā taha e rua.
x-y=2,2x-3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-1\right)y=2\times 2,2x-3y=-3
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-2y=4,2x-3y=-3
Whakarūnātia.
2x-2x-2y+3y=4+3
Me tango 2x-3y=-3 mai i 2x-2y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+3y=4+3
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=4+3
Tāpiri -2y ki te 3y.
y=7
Tāpiri 4 ki te 3.
2x-3\times 7=-3
Whakaurua te 7 mō y ki 2x-3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-21=-3
Whakareatia -3 ki te 7.
2x=18
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te 2.
x=9,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}